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Resonances in the Rigged Hilbert Space
and Lax—Phillips Scattering Theory
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The rigged Hilbert space formalism of quantum mechanics provides a framework in
which one can identify resonance states and obtain the typical exponential decay law.
However, there remain questions of the interpretation and extraction of physical infor-
mation through the calculation of expectation values of observables. The Lax—Phillips
scattering theory provides a mathematical construction in which resonances are assigned
with states in a Hilbert space, thus no such difficulties arise. The original Lax—Phillips
structure is inapplicable within standard nonrelativistic quantum theory. Through the
powerful theory ofH P spaces certain relations between the two theories are uncovered,
which suggest that a search for a “unifying” framework might prove useful.

KEY WORDS: resonance; semigroup evolution; Lax—Phillips theory; rigged Hilbert
space:H P spaces.

1. INTRODUCTION

Recent years have seen a rising interest in the rigged Hilbert space (RHS)
description of quantum mechanical resonances. It is found that within the RHS
structured ¢ H ¢ ®* (whereH is the quantum mechanical Hilbert space) uti-
lized by this theory it is possible to assign to a quantum mechanical resonance a
state in®*, the “larger” sector of the Gel'fand triplet (Bailey and Schieve, 1978;
Baumagartel, 1975; Bohm, 1986; Bohet al, 1989; Bohm and Gadella, 1989;
Horwitz and Sigal, 1978; Parraviciet al., 1980). This state then exhibits a semi-
group evolution law under the evolution generated by the extersiomf the
Hamiltonian tod®*. In particular, one obtains the typical exponential decay of the
time evolution of the resonance. These properties, which are unattainable within
the standard quantum mechanical Hilbert space formulation of the problem, via
the Wigner—Weisskopf model (Weisskopf and Wigner, 1930), renders the model
for resonances thus obtained particularly appealing. However, the representation
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of the resonance obtained in the RHS formalism is in a Banach space which does
not coincide with the quantum mechanical Hilbert space, and does not have the
properties of the Hilbert space, such as the existence of a scalar product and the pos-
sibility of calculating expectation values. One cannot compute physical properties
other than the lifetime in this way.

The Lax—Phillips scattering theory (Lax and Phillips, 1967), originally de-
veloped for the description of resonances in electromagnetic or acoustic scattering
phenomena, has been used as a framework for the construction of a description
of irreversible resonant phenomena in the quantum theory (this is referred to as
the quantum Lax—Phillips theory). As in the RHS formalism, this theory leads
to a time evolution of resonant states which is of semigroup type, exhibiting the
exponential decay law for the resonance. In principle the quantum Lax—Phillips the-
ory (Eisenberg and Horwitz, 1997; Horwitz and Piron, 1993; Strauss and Horwitz,
2000a,b) provides the possibility of constructing a fundamental theoretical descrip-
tion of the resonant system. The utilization of the mathematical structure of the
original Lax—Phillips theory ensures that the resonance is represented as a state in a
Hilbert space. In this way one retains the interpretation of the quantum mechanical
state of the system, enabling the calculation of expectation values of observables.

Although the quantum Lax—Phillips theory was found to provide a proper de-
scription for nonrelativistic open quantum systems and certain relativistic quantum
mechanical models, the fact that the theory necessitates a generator of evolution
with a spectrum which is unbounded from below, makes it inapplicable within the
framework of standard nonrelativistic qguantum mechanics.

In this work | consider the RHS model for guantum mechanical resonances
developed by A. Bohm and M. Gadella (Bohm, 1979a,b, 1980, 1981; Bohm and
Gadella, 1989; Gadella, 1983a,b, 1984). It is my purpose to show that a close
examination of the mathematical structures of the RHS model for resonances and
the Lax—Phillips scattering theory reveals a strong relation in their description
of resonances. In a sense one can say that the RHS model “reaches out” into
the Lax—Phillips Hilbert space to obtain the desired exponential decay, semigroup
evolution, and its connection to poles of tBenatrix in the second Riemann sheet.
These observations bring up the possible existence of a “unifying” framework
which inherently includes the advantages of both of the theories with which we
are concerned here. Such framework has been proposed and the full consequences
of its application to the description of resonances are explored elsewhere (Strauss
and Horwitz, in preparation).

The outline of the rest of this paper is as follows. In section 2, | describe the
Lax—Phillips scattering theory. Section 3 provides some of the broader mathemat-
ical context giving rise to the structure of the Lax—Phillips scattering theory. In
section 4, | essentially repeat the construction of the RHS model for resonances.
In the process, key parts of the theory are reformulted in terms of the fundamental
structures found in the Lax—Phillips scattering theory. Thus, it is seen that the
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mechanism of identification of the resonance states and their relation to singular-
ities of theS-matrix in the RHS model and in the Lax—Phillips scattering theory
are strongly related. Conclusions follow in section 5.

2. THE LAX-PHILLIPS SCATTERING THEORY

The Lax—Phillips scattering theory was originally developed by P. D. Lax and
R. S. Phillips for the description of the process of scattering of electromagnetic
waves or acoustic waves off a spatially bounded target (Lax and Phillips, 1967). The
theory, devised for application to hyperbolic partial differential equations (wave
equations), is based on a Hilbert space description of the propagating waves. The
time evolution of these waves is given by a unitary evolution group of operators
defined on the Hilbert space, satisfying several conditions. In the framework thus
developed there arises in a natural way a semigroup defined on a subspace of the
Hilbert space corresponding to waves interacting with the target. One of the main
results of the Lax—Phillips scattering theory is the fact that the eigenvalues of the
generator of the semigroup are associated with poles @&thatrix of the theory.
It is the existence of the semigroup and the relation between eigenvalues of its
generator and poles of tHe@matrix which renders the mathematical framework
of the Lax—Phillips scattering theory particularly attractive for adaptation to the
description of resonances in quantum theory.

Consider a Hilbert spadd and an evolution group of unitary operattfé)
on H. Suppose that there exists two distinguished subspacesnd D, which
have the properties th&i_ is orthogonal taD, and

ut)b-cb., t<0
U{t)D. c D., t>0
NU(t) D+ = {0}

UMD, = H

2.1)

We callD_ theincoming subspacndD ., theoutgoing subspac® _ corresponds
to incoming waves which do not interact with the traget priot toe 0 and D,
corresponds to outgoing waves which do not interact with the targettafted.
These properties are reflected in the stability properti€&s ochndD, in Eq. (2.1).

Let L?(—o0, oo; N) be the space df? functions defined on<{oo, co) and
taking their values in a Hilbert spadd. Ja. G. Sinai (Cornfieleét al, 1982)
proved that if the conditions of Eq. (2.1) hold for the outgoing spagehen the
following theorem holds.

Theorem A (Ja. G. Sinai) if D, is an outgoing subspace with respcet to a
group of unitary operatorsJ(t), then H can be represented isometrically as the
Hilbert space of functions 4(—oo, +00; N) for some auxiliary Hilbert space N



2288 Strauss

so thatU(t) goes into translation to the right by t units, and, s mapped onto
L2(0, +00; N). This representation is unique up to an isomorphism of N.

A representation of this kind is callesltgoing translation representation
for the groupU(t). An analogous representation theorem holds for an incoming
subspac®_, i.e., there is a representation in whikhis mapped onto the Hilbert
spacd_?(—o0, +00; N), D_ is mapped onth ?(—oo, 0; N), andU(t) acts as trans-
lation to the right byt units. This representation is called theoming translation
representation

For most purposes it is more convenient not to work with the translation rep-
resentations but with two different representations, called spectral representations.
By Fourier transformation of the incoming translation representation and the out-
going translation representation we obtain theoming spectral representation
andoutgoing spectral representatisaspectively. According to the Paley—Wiener
theorem (Paley and Wiener, 1934), in the incoming spectral representation, the
subspaceD_ is represented by the Hilbert space of functi¢iy$(R) consisting
of boundary values oR of functions in the Hardy spadel,ﬁ(]_[). Denoting the
upper half of the complex plane Ky, the spaceHZ([]) is characterized as the
space of analytic vector valued functions[dntaking their values in the auxiliary
Hilbert spaceN, and such that

+00
sup [ f(x+iy)I3dx < C
y>0J—00

For some constar® > 0. In the outgoing spectral representation the subspace
D, is represented, according to the Paley-Wiener theorem, by the function space
Hy (R) consisting of boundary values of functionsktg ([ ), a Hardy space of
vector valued functions (taking valuesi) on the lower half-plang].

LetW_ andW_ denote the operators that map elementd @b their outgo-
ing, respectively incoming, translation representers. We call the operator

S-P=w,w? (2.2)

the abstract scattering operatoassociated with the groug(t) and the pair of
spacesD_ andD,.. It was proved by Lax and Phillips th& - is equivalent to

the standard definition of the scattering operator. The abstract scattering operator
has the following properties:

a) S-P is unitary;
b) S-P commutes with translations; and
c) S-P mapsL?(—oo, 0;N) into itself.

Property (b) is due to the fact th&t" is a map between two translation repre-
sentations. One can understand property (c) by noting that in the incoming trans-
lation representation the subspdoe is identified with the space of functions
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L?(—o0, 0;N) and in the outgoing translation representatibnis represented as
L?(0, +00; N). The orthogonality oD_ andD, then implies that in the outgoing
representatiol_ is represented by a subspace.é{—oo, 0; N) and property (c)
above follows.

Going over to the spectral representation the scattering operator transforms
intoS-P = FS-PF~1, whereF is the Fourier trasform operator. Properties (a)—(c)
above then imply corresponding properties$6r™:

a) S is unitary.
b) S“P commutes with multiplication by scalar functions.
¢) S-P mapsHy (R) into itself.

According to a special case of a theorem of Foures and Segal (1955), an operator
satisfying propertiesa()—(c’) can be realized as a multiplicative, operator-valued
functionS(c) (with o € R), mappingN into N for eacho € R and satisfying

a’) S(o) is the boundary value of an operator valued functit§m) analytic for
Imz > 0;

b") |IS(2)|n < 1forimz > 0;and

c¢’) S(o), o € Ris, pointwise, a unitary opertor on the auxiliary Hilbert spate

Lax and Phillips define a family of operatoja(t);t > 0} by
Z(t) =P, U@)P_, t>0 (2.3)

HereP, is the orthogonal projection ¢fl onto the orthogonal complement bBf,
andP_ is the orthogonal projection ¢f onto the orthogonal complement bf_.
From the definition Eq. (2.3) itis evident that (for ar)yZ(t) annihilatesD_ and
its range is orthogonal tB, . For any elemenf € D, andt > 0 we have, using
the stability properties oD .. from Eqg. (2.1)

Z(t)f =P,UR)P_f =P, U(t)f =0

hence the subspad®, is annihilated byZ(t). Furthermore, for anyf € D_ and
anyg € H we have

(f,Z®9hn = (f, PLUMP_g)n = (P+ f, UMP_g)n
= (U, P_g)u = P_U(-1)f, g)n (2.4)
The stability properties dD_, Eqg. (2.1), and the definition &_ then implies that
(f,Z(t)g)n =0, feD_

and we find thatD_ is not in the range oZ(t). We conclude that the family
{Z(t);t > 0} annihilateD_ andD_. and take the subspaée=H © (D_ @ D,)
into itself.
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Itis easily proved that the family of operatd&(t); t > 0} forms a continuous
semigroup. Considering a vectére K, we have
Z(t)Z(tx) f = PLUMP_Z(t) f = P Ut)Z(tp) f
=P, Ut)P, Z(t)f, t,t,>0 (2.5)
The stability properties of the subspdae, Eq. (2.1), imply the following identity:
P,UM)(I —P,)=0, t>0 (2.6)
Inserting this identity into the previous equation, we find
Z(t)Z(t2) f = PLU(t)PU(t) f = PLUt)[(1 — Py) + P4 ]U(t) f
=P, U(t)U(ty) f = P_U(t, + t,)P_f
=Z(t+t)f, t,b>0 feKkK (2.7)

Lax and Phillips prove the following theorem, providing further properties of the
semigroup{Z(t);t > 0}.

TheoremB. The operator$Z(t);t > 0} annihilate D, and D_, map the orthog-
onalcomplement k= H & (D_ @ D, ) intoitself, and form a strongly continuous
semigroup (i.e.Z(t1)Z(t;) = Z(t1 + t2)) of contraction operators on K. Further-
more, Z(t) tends strongly to zero as-t oo: limy_, ., Z(t)x = 0 for every x in
K.

Henceforth, the family of operatofZ (t);t > 0} will be called the Lax—Phillips
semigroup. The operator-valued functiS(e), with propertiesq”) — (c”) above,

will be called the Lax—Phillips S-matrix. Properties’) — (¢”) characterize the
Lax—Phillips S-matrix as an analytic function on the upper half-plane. The analytic
continuation ofS(z) to the lower half-plane is given by

S@=[S"@]Y, Imz<o0 (2.8)

One of the main results of the Lax—Phillips scattering theory is the following
theorem proved by Lax and Phillips.

Theorem C. LetB denote the generator of the semigraif). If Im u < 0O, then
w belongs to the point spectrum Bfif and only if ST(iz) has a nontrivial null
space.

This theorem establishes a very important relation between the eigenvalues of the
generatoB of the Lax—Phillips semigroup and poles of the analytic continuation

of the Lax—Phillips S-matrix§(z) to the lower half-plane. This theorem provides

a motivation for the use of the framework of the Lax—Phillips scattering theory
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for the description of quantum mechanical resonances. It enables the possibility
of associating certain, well-defined, vectors in a Hilbert spaceith resonance
poles of the S-matrix, such that these vectors are eigenvectors of an evolution
semigroup related to the unitary evolution grouptdn

The proof of the theorem above is illuminating and is referred to again later
on. Therefore, we reproduce it here (Lax and Phillips (1967) provide both this
version and a second version of the proof in their book.

Proof: Letx be an eigenvector of the generaBof the Lax—Phillips semigroup
with eigenvalueu
Bx = ux (2.9)
then
i %Z(t)x = BZ(t)x = Z(t)Bx = uZ(t)x
and so
Zt)x=e"x, t>0 (2.10)

As indicated above the domain & contains vectors irK c H. In the out-
going representation the Hilbert spakkis represented by the function space
L?(—o0, +00; N) which we take to be functions of the real parametés € R).
Vectors inK are then represented by continuous functions3g-oo, 0; N) and
are supported os < 0. Let f represents, in this representation, an eigenvector
x € K of B. In the outgoing translation representation Eq. (2.10) is transformed
into
fs—t)=e"f(s), s<0, t>0 (2.11)
we sets = 0 and find
f(-t)=e"f0), t>0
Denoten = f(0) ands = —t, then
f9=ms=0 (2.12)
o s>o0 '

Equation (2.12) is the general form for the outgoing translation representer of
an eigenvector oB. Now, in the incoming translation representation the sub-
spaceD_ C H is represented by?(—oo, 0;N). When mapped to the outgoing
translation representation, this subspace is represent&tbly?(—oo, 0;N)
L2(—o0, 0;N). The orthogonalityK L D_ then imply that in the outgoing trans-
lation represention we have

(f,.$"PK)2my =0, ke L*(—o0,0;N) (2.13)
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wheref is, as above, an outgoing translation representer®©K . In the outgoing
spectral representation we obtain

(f, 8Py 2R =0 (2.14)

wherek, f are the outgoing spectral representers correspondifgatud f re-
spectively (below, functions and operators in the outgoing spectral representation
are denoted with a hat), anst-* is the Lax—Phillips S-matrix in the spectral
representation. Fourier transforming Eq. (2.12) we obtain

fo)=i——, seR (2.15)
o —H
Using Eq. (2.15), we write explicitly the scalar product in Eq. (2.14)

0=(f,8"PK)zr = /m do M S©@KEOIN

oo o—U

(2.16)

Since the vector-valued functid®(z)k(z) is a Hardy class function, it is possible
to calculate the integral in Eq. (2.16) as a contour integral in the upper half-plane.
The only contribution comes from the poleawvith the result

(n, SGk(m)n = 0 (2.17)

Furthermore, the vectdt € D_ is arbitrary and we conclude th&(u) has a
positive codimension. This implies th&f (i) has a nontrivial null space and the
proof is complete. O

This concludes the description of the scattering theory developed by Lax and
Phillips. It turns out, though, that in order to complete the analysis of physical
models treated within the framework given here, one needs to put the Lax—Phillips
scattering theory into a more general mathematical context. This is also required
for the purpose of including into the range of applicability of the theory classes
of physical models for which this framework cannot be applied directly. Some
aspects of this, more general, theory are discussed in the next section.

3. MATHEMATICAL BASIS OF THE LAX—PHILLIPS
SCATTERING THEORY

Given a Lax—Phillips structure with an evolution grougt) on the Hilbert
spaceH, consider the family of operatof$ (t)}i>osuchthaf (t) : H — H,t > 0,
and

T(t)=P.U{t), t=>0 (3.1)

where, as in section 2 abowv, is the projection on the orthogonal complement
subspace td. in H. Each element of this family of operators annihilates the



Resonances in the Rigged Hilbert Space and Lax—Phillips Scattering Theory 2293

subspaceD,, as can be seen, for example, from Eq. (2.1). Furthermore, noting
thatin Eq. (2.7) itis possible to replaZét;), Z(t,), andZ(ty + to) by T(t1), T(to),

andT (t; + t2), respectively, and the vectdre K by any vectorf € D_ & K, we

find for any vectorf € D_ @ K

Tt)T()f =Tty +t2) f, t1, >0 (3.2)

and so the family{T(t);t > 0} forms a one-parmeter semigroup. Finally, we ob-
serve from Eq. (2.5) that, fof € K, we have

Z(t)Z(t) f = PLUt)P. UML) f = T(t)T(L)f, t, >0, feK (3.3)

where{Z(t);t > 0} is the Lax—Phillips semigroup.

Consider now the Lax—Phillips outgoing translation representation. Denote
the outgoing translation representer of an oper&foyfrom the family defined in
Eq. (3.1) byT (t). Given any vector-valued functioh € L2(—co, +o0; N) in the
outgoing translation representation we have

FofHe =19 =0, (3.4)
~ o s>0' - '
Denote the generator of the semigrodi(t); t > 0} by B’. Repeating the steps
taken in Eqgs. (2.9)—(2.12), with(t) replacingZ(t), we find the spectrum @&’ to
beo(B’) = {u[lImu < 0}. If the outgoing translation representerRfis denoted
B’, then the eigenfunctions &' are given by

éusns<0
, Yu, Imu< 0, vne N (3.5)

f“'”(S)z{o s>0

wheref, , is an eigenfunction oB’ with eigenvalug.. We find the representation

of the semigrougT (t); t > 0} and the eigenfunctions, ,, in the outgoing spectral
representation. For this we need the definition of a Toeplitz operator on the Hardy
spaceH; (R) (see, for example Rosenblum and Rovnyak, 1985, and references
therein).

Definition (Toeplitz opertor orH (R)). LetW e LOB‘?N)(R)(B(N) is the space
of bounded linear operators dw). Let P, denote the projection of2 (R) on
Hy (R). Then the operatoFy : Hi (R) — H;} (R) defined by

Twf = P.WH, f e HJ(R) (3.6)
is called a Toeplitz operator (dd,; (R)) with symbolW. HereW is the operator

of pointwise multiplication by, i.e., W f)(o) = W(o) f (o), 0 € R. We define
the following multiplicative operator

[(eEt) f](E) = eEt f (E), feL%3(R), EeR (3.7)
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and, taking the Fourier transform of Eq. (3.4) and using the definition, Eq. (3.6),
we find in the outgoing spectral representation

T)f = Pe Bt f =Teef, feHI(R) (3.8)

andT(t)f = Teoee f =0 for f € Hy(R). The semigrougT(t);t > 0} is, there-

fore, represented in the outgoing spectral representation, by the Toeplitz operator
with symbole&t. Taking the Fourier transform of Eq. (3.5), we find that in the
outgoing spectral representation the eigenfunction‘%(b)‘: Te-ier are given by

funl@)=i——  Vu,Imu<0, VneN (3.9)
o—u

Returning to Eq. (3.1) and (3.3), we identify the Lax—Phillips semigroup
{Z(t);t > 0} as the restriction ofT(t); t > 0} to the subspacK, i.e.,

Z(t) =TM)IK (3.10)
where
K=Ho(D_®D,) (3.11)

The Lax—Phillips S-matrix, mapping the incoming representation onto the
outgoing representation, is, from the mathematical point of view, a map of
L2(—o0, +00; N) onto itself. This map is characterized by its actiontfi(R) C
L?(—o0, +00; N) (which represents in the incoming spectral representation the
subspaceD_) as an inner function (see secton 4 below). We have, therefore,
StP = g, for some inner functior§,. The mapping ofH(R) by the Lax—
Phillips S-matrix results, therefore, in the subspa&eH;; (R) (representingd_

in the outgoing representation). The subspggel,f (R) is an invariant subspace
for the action of the translations defined in Eq. (3.7)tfer O (this is the stability
property ofD_, since the evolution is represented by translation). From Eq. (3.10)
we infer thatin the outgoinging spectral representation the Lax—Phillips semigroup
is represented by the restriction of the semigroup in Eqg. (3.8) to the subspace

K = HY(R) © ShHI(R) (3.12)
that is
Z2(t) = TH)IK = Teee|K (3.13)

We see that, in the outgoing spectral representation, the Lax—Phillips semigroup is
given by the restriction of the semigroup of Eq. (3.8) to the orthogonal complement
in HY (R) of an invariant subspace obtained by the action of an inner fun&jion
onH;; (R). The main theorem of the Lax—Phillips theory (Theorem C of section 2)
states that the eigenvalues of the restricted semigroup in Eq. (3.13) are related to
the positive codimension of the inner (operator-valued) func8pfz) at certain
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points of the upper half-plane (or poles of the analytic continuatid®,¢£) into
the lower half-plane).

We note that the broader mathematical context for the structure just described
is within the Sz. Nagy—Foias theory of contraction operators on Hilbert spaces (Sz.-
Nagy and Foias, 1970). In particular, the Lax—Phillips semigroup is related to the
so-called compression of a shift (for a very thorough treatment of this type of
operators, see Nikol'skii, 1986).

In the following section the RHS theory of resonances and its relation to the
mathematical structure of the Lax—Phillips scattering theory is discussed in the
context of purely spectral models. This simplifies the exposition of the main ideas
due to the fact that in this case one has to deal only with scalar functions. It should
be emphasized that the structures below can be recast into the general form of
vector-valued functions.

4. RHS MODEL OF RESONANCES AND THE MATHEMATICAL
FRAMEWORK OF THE LAX—PHILLIPS THEORY

4.1. Quantum Mechanics in the Rigged Hilbert Space

In the framework of quantum mechanics one assigns to the quantum mechan-
ical system, at each point of time, a state vector in an appropriately constructed
Hilbert spaceH. The physically observable quantities are associated with self-
adjoint operators ofil. To complete the description of the physics involved with
the quantum mechanical system, an evolution law is supplied in the form of a
suitable equation of evolution (Sadinger equation in the case of nonrelativistic
guantum theory).

The RHS approach to qguantum mechanics is based on the observation that
a Hilbert space constructed for the description of a typical quantum mechanical
system is in a sense both “too big” and “too small.” Such a Hilbert space inevitably
contains “irrelevant” state vectors. There are vectors related to operators which
are observables but which are not physically realizable and, furthermore, there are
self-adjoint operators okl which one would want to associate with observables
but which are unrealizable as physical observables for certain quantum mechanical
systems. Examples are vectors which lie outside the domain of definition of an
observable represented by an unbounded operator (e.g., infinite energy states,
infinite momentum states, etc.) or the position operator for a bound state of an
atom. In addition there are objects which are important in quantum theory and
cannot be included within the standard framework. An important class of objects
which fall into the later category are quantum mechanical resonances, with which
this work is concerned.

With the above observations in mind the RHS formalism is centered on the
construction of a Gel'fand triple (Gel'fand and Vilenkin, 196&%)c H c ®*,
whereH is the quantum mechanical Hilbert space corresponding to the particular
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system considered. The nuclear spdcés dense inH and is endowed with a
topology 4 which is finer than the norm topology inherited frokh, and the
spaced* is the space ofs continuous antilinear functionals ab. As a result
of the application of the Gel'fand—Maurinuclear spectral theorenthe space
@ has the property that for every e.s.a. (essentially self-adjoint) operatbr on
there exists a complete set of generalized eigenvectors and one can implement in
a rigorous way the Dirac formalism. The spabealso has the property that all
algebraic operations with operators are allowed and no questions of domains of
definition arise. With respect to the topology on ® the operators corresponding
to physical observables form an algebra of continuous operators.

The factthat, inthe RHS formalism, the Hamiltontdis e.s.a. ot (i.e., with
respect to the norm topology &) and continuous with respect to the topology of
® enables us to utilize the Nuclear Spectral, or Gelfand-Maurin, theorem (Gel'fand
and Vilenkin, 1964). This guarantees the existence of a complete set of generalized
eigenvectors belonging >

(Hp|A) = (@p|H™A) = A{p|L), Vo, L e A

whereA isthe spectrum dfi, |A) € ®* andH* is the extension dfl to an operator
on the spac®* defined by

(Hoplx) = (¢IH*x), Vo e d, Vxed*

The completeness of the set of generalized eigenvefitors <, means that for
every¢, ¢ € ® and some uniquely defined positive measuren A

@, P = /A du() (¥ 14 (11)

with (L|¢) = (¢|)1). Thus, we can formally write

p) Z/Adll()»)P»)(M(P)

However, the RHS model for resonances formulated by Bohm and Gadella forms

a nontight riggingfor the HamiltoniarH in a way that enables the identification

of certain elements in the spade“ as states corresponding to resonances of
the quantum mechanical system. These states evolve, for timel according

to a one-parameter semigroup evolution law generated bythe extension of

H to ®*. The eigenvectors oH* corresponding to resonances have complex
eigenvalues and resonances are seen to undergo an exponential decay law for
t>0.

Despite the fact that the RHS framework allows the possibility of an asso-
ciation of a state with a quantum mechanical resonance, it cannot be said that it
provides a complete satisfactory description of quantum mechanical resonances.
The main difficulty with such states is that they are elements’afwhich is not a



Resonances in the Rigged Hilbert Space and Lax—Phillips Scattering Theory 2297

Hilbert space. Sinc®* is a space of functionals @b, one can evaluate an element

x € ®* onan elemenp € @, i.e., evaluatdg|y). However, an inner product of
elements ind* is not defined. If a physical observable is associated with a self-
adjoint operator, sag, on H, then it is possible to define the extensidit of A

to an operator o>, but one cannot extract physical information related to the
physical observable since it is impossible to calculate expectation valdesai
elements ofd*. The probabilistic interpretation the quantum mechanical states
and the calculation of expectation values corresponding to measurable physical
guantities hold in the quantum mechanical Hilbert space framework and do not
carry over tod*.

As mentioned above, in the mathematical framework of the quantum Lax—
Phillips scattering theory resonances are associated with Hilbert space state vec-
tors. In this case no problems arise with the calclation of expectation values of
observables in the resonant state or with the quantum mechanical probabilistic
interpretation. However, the mathematical structure of the Lax—Phillips scattering
theory is not directly applicable to standard nonrelativistic quantum mechanics.
Originally devised for handling scattering problems within the theory of classical
hyperbolic wave equations, the generator of evolution, which we denokg, by
in the quantum Lax—Phillips scattering theory, is required to be unbounded from
below with a spectrum,(K) = R.

Inthe next few subsections | will describe in more detail the RHS construction
in quantum mechanics. In the course of this development | will identify some of
the mathematical objects, which are central to the RHS description of resonance
phenomena, as identical to those which are found in the Lax—Phillips scattering
theory. These relations between the two, seemingly unrelated, theories suggest that
a search for a unifying framework, which incorporates the advantages inherent in
the two approaches, might prove fruitful.

4.2. RHS for the Free Hamiltonian Hy

Consider a quantum mechanical scattering system exhibiting resonance phe-
nomena. We assume that the model for the system under consideration has the
following properties (Bohm and Gadella, 1989).

1. The resonance scattering process is described by a decomposable Hamil-
tonian

H=Ho+V

whereV is the potential term anH is a Hamiltonian describing a free
particle.
2. a) The absolutely continuous spectrum of the HamiltoAasio,(H) =
R*.
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b) H may have discrete eigenvalues.
c) H does not have a singular continuous spectsggH) = 0.

H = Hp @ Hac

whereH, C H is spanned by the eigenvectors corresponding to the
discrete eigenvalues aril., corresponding to the absolutely contin-
uous spectrum, is its orthogonal complement.

3. The Moller wave operators exist and asymptotic completeness holds.

In addition to the requirements above we simplify our analysis by considering a
purely spectral model. This choice is made for the sake of simplicity and clarity
of exposition and implies no restriction on the range of applicability of the theory
for more general cases.

The first step in the RHS formulation of the scattering process is the construc-
tion of two particular RHS, or Gel'fand triplet®,. ¢ H c ®X. We choose these
RHS, out of the many possible tripletsC H C ®*, because of their particular
suitability for the description of resonances. The spaeesre chosen such that

1. Hy®y C &

2. Hpis e.s.a. onb. (i.e.,Hq with the domaind.. is e.s.a. orH); and

3. Hg is a continuous operator eb.. (with respect to the nuclear topology
T ON q)i).

The spaces of functionais} are the duals o, consisting of continuous anti-
linear functionals respectively ab.. (with respect to the topologs, on @..).

A realization of the Gel'fand triple structure in terms of spaces of functions
is achieved by using the spectral representatiod f\We assumed that the con-
tinuous spectrum dfly (denoted naturally b¥) is 0 (Hg) = R™. In this case we
construct, using the Gel'fand—Maurin theorem, a unitary tdaguch that

U: Hac — L3R (4.1)
In this spectral representation the free Hamiltortikris represented by
Ho = UHoU ™ (4.2)
The operatoH, acts as multiplication by the independent variable
(Hop)(E) = E$(E), EeR’
The space®. are then realized as spaces of functifnsgiven by
D; =Ud. (4.3)

The unitarity ofU implies that properties 1-3 above are transformed into the
following properties oHg as an operator oh?(R*):

1. F'()Di C D..
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2. Hois e.s.a. oDs.
3. Hp is continuous orD. (with respect to the nuclear topology @ ; see
below).

One can find RHD ¢ L%(R*) ¢ D such that, has properties’+3 on D
respectively.

We turn now to the definition of the function spades. We defineD, as a
linear space of functions satisfying the following conditions (Bohm and Gadella,
1989):

a. Anyg¢ € D, istherestriction tdR* of a functioninH*(R) (whereH *(R)
consists of boundary values of functionsHit(IT); see section 2).

. We haveHoD, c D, (where Hop)(E) = E¢(E) for any¢ e L(R"))

. D, is dense in the Hilbert spate(R*).

. Hpise.s.a. oD,.

. We endowD_ with a complete nuclear, metrizable topology such that
is continuous oD, .

f. This topology onD, is stronger than the Hilbert space topology which

D, possesses as a subspace fiR™).

Under these conditions the tripl€, c L?(R") c D is a RHS and, defining
®_ =U"1D,, we have thatb. ¢ H c ®* is also a RHS. Moreover, under
conditions a.—f. it is possible to show that, ®n, Hg has the properties 1-3 listed
above.

A function spaceD, satisfying conditions a—f may be constructed in several
steps. Denoting the Schwartz space of function&®diy S, we consider

O Q0T

S(R™) ={f|f € Sand Suppf) = R} 4.4)
We now define another function space,
A, =F[S(R7)] (4.5)

whereF is the Fourier transform operator. The Paley—Wiener theorem states that
for a function f € L?(R™) we haveF[ f] € H*(R). For the space\, we then
find that

AL =F[S(R)] =SNHY(R) (4.6)
An important property of the spacg, is the fact that the triplet
Ay C HT(R) C AX (4.7)

is an RHS.
The spacd,, possessing the required properties a—f, has a simple definition
in terms of the spaca ;.

D, =Pr+Ay (4.8)
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wherePg- is the projection of_?(R) on L2(R*). A theorem of Van Winter (1971)
states that any function iH *(R) is completely determined by its values &f.
This implies the existence of a mégsuch that

9A+ - D+, 971D+ - A+ (49)

The function spac®_ . defined in (4.8) provides us with the desired RHS
D, C L%(R*) c D and, via the mapJ, the tripletd_ ¢ H c &*.

As mentioned above, the description of resonance scattering processes re-
quires the definition of two RHS. One of these is defined above, we now define
the second. For this we need the function space The spacd_ is defined as a
linear space of functions satisfying a set of conditions obtained by repl&ring
with D_ in conditions b—f above and replacing condition a by

a. Every function inD_ is the restriction tdR™ of a function inH ~(R).

The construction of the function spabe is similar to that ofD_ . One starts with

S(R") = {g|g € S and Suppg) = R'} (4.10)
The next step is to define the spate
A_=F[S(RN] =SNH (R (4.11)

Again, it is important to note that the triplet
A_C H(R)c AX (4.12)
is an RHS. The definition db_ in terms of A_ is given by
D_=Pr.A_ (4.13)
Using Van Winter’s theorem, we can define a one-to-one ﬁramch that
OA_=D_ (0)'D_=A_

As in the case of the spa@®, we find thatD_ ¢ L?(R*) ¢ D* isan RHS. Using
Egs. (4.1) and (4.3), we then find the desired RbISC H C ®7.

4.3. Extension of the Free Hamiltonian and Its Complex Eigenvalues

We have described the construction of the two Gel'fand tridlesc H C
@7 aswell as their representations, through the mapginigterms of the function
spacesD. C L?(R*) ¢ DX. The RHS structure enables us to extend operators
defined ond.. to the dual space®?.

We define the extension 7 of the unperturbed Hamiltoniado. This is
done using the defining relation

(Hop+|fi) = (p£l(Ho)* f1) @1 € @y, fie df (4.14)
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One of the main results of the RHS approach to resonance scattering is con-
cerned with the existence of complex eigenvalues for the extension of the Hamil-
tonian Ho)*. In fact, if w_ is complex and Imw_ < 0 then there exists a unique
functional|w_) € ®X such that

(Ho)*lw-) = o_|w-) (4.15)
Similarly, if Im w, > 0, there exists a unique functional, ) € ®* such that
(Ho) o) = o4 lwy) (4.16)

For eachg € ®_ Eq. (4.3) implies thatj = Ug € D, c L?(R*) and, using
Eq. (4.9),071§ =g € A, ¢ H*(R). The Hardy RHS structure of Eq. (4.7) is
used to define continuous linear functionals®n. This is achieved by the fol-
lowing definition of an extensiof* of the map of Eq. (4.9):

(g1f)=(0g'10*f) =(8l10*f), g e A,,§e Dy, f € A*,0°f € DX
(4.17)
Take the function f,_ € H*(R) given by f, (E)= —(2ri) Y(E -
w_)"1,E e RIm w_ < 0. The RHS structure of Eq. (4.7) implies that we can
considerf,,_ as an element ok . In this case we may apply the mé}s through
Eq. (4.17),
(91f,0) = (916 f, ) = (077l ) = (079, fo Ju+m
+00

= o [ EETEN - = [T )] (4.18)
7l J_ o E—w_

Using the stability property ob, under the action ofl (see condition b above),
we obtain

@' [Hog))(E) = E(@'g)(E), EeR (4.19)
With the use of Egs. (4.19), (4.18), and (4.14), we get
(9I(Ho)* £, ) = (Fogle™ f,) = (0~ [Fog] f,.)

“+o00

— I [ e EE ) E)

[ G

(4.20)

Equation (4.18) together with Eq. (4.20) gives
(9lHo)* £) = w9l ") (4.21)
Sinceg € D, is arbitrary, we have
(Ho 1,0 = oI f0) (4.22)
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Define the extensiob* of the mapU to @7 through
(UglU*F) = (gIF), ged,, Fed}

then, from Egs. (4.22) and (4.15), we see thatw_) = | f.* ) hence, we have the
desired generalized eigenvector of the extended free Hamiltonian.

4.4. The Evolution Semigroup in the RHS and in Lax—Phillips Theory

In this subsection our goal is to extract further information concerning the
semigroup behavior emerging within the RHS formalism via of the actid#jof
on the generalized eigenvectdrs_) (we note again that there exists a unique
generalized eigenvector for each complexwith Im w_ < 0). We compare this
semigroup to the semigroup of the Lax—Phillips theory and show that, in the
mathematical sense, both theories utilize the same translation semigroup.

We start with a statement which can easily be proved (Bohm and Gadella,
1989), regarding the stability d@.. under the action of elements belonging to the
free evolution groupJy(t) = e Hot

ellep_cop_, t<O
elo_ o, t>0
e'Mlep, co,, t>0
elo, 7o, t=<O0

(4.23)

The stability properties ob_ under the action dfly(t) for t < 0 enable us to put
forward the following definition of a semigroup evolution @

(@hoglk) = (gle "), t>0, ge Dy, ke Df (4.24)

We now apply the definition (Eq. (4.17)) and obtain, in a similar fashion to
Egs. (4.18)—(4.20),

(gl F Uy = (dfotg £ ) = (0[Pt g]| , )
o~ 1 +00 . . 1
="Myt Jwm=—5 - [ dEEFO BNz
= e '[(6-1g)(w-)] (4.25)

Inserting Eq. (4.18) into Eq. (4.25), we obtain
<g|e—i(|:|o)xt fai):e—iw,wg'fai% t>0 (426)
with the following immediate implication

e Y ) et fX), =0 (4.27)
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Equation (4.27) exhibits a distinct contractive semigroup behavior. The basic mech-
anism through which the RHS method achieves this result is clearly demonstrated.
Utilizing the Gel'fand triple structure to extend the Hamiltonian (the generator of
evolution) to the space of functionats*, one may find generalized eigenstates of
the extended Hamiltonian, providing the sought for exponential decay law.

To understand better the source of the semigroup law of evolution in Eq.
(4.27), we shall make use of the fact that (R) is a closed subspace bf(R)
and

L2(R) = H (R)® H"(R) (4.28)

In Egs. (4.24)—(4.26) the functianis taken to be an element &f,, and we have
0~'g e A, c H*(R). RegardingH *(R) as a subspace &f(R) and denoting by
P, the orthogonal projection df?(R) on H*(R), we can write) 'g = P,6~1g.
Furthermore, we define a unitary multiplicative operatdft : L?(R) — L?(R)

(eTELf)E)=e F f(E), felR) (4.29)

Inserting this information in Eq. (4.25) and taking notice of the fact that the scalar
product inH*(R) is inherited from that of_?(R), we get

<g|e—i(l3|o)xt f x ) — _i /ﬁo dE[(m)(E)] g iEt 1
“- 27 J_o E—-w_
= (67 'g, e iEt fo )Lzr) = (P10 710, e iEt fo )L2R)
= (9_19, P, e:-iEt fwi)LZ(R) = (9_19, Te-iet fw,)H+(R)
(4.30)

whereT, e is the Toeplitz operator oRl *(R) with symbole~'Et defined by (see
Eq. (3.8) for the vactor-valued case)

T f =P, e ELf,  feHHR) (4.31)
On the other hand we have, from Egs. (4.18) and (4.26),
(gle B tfx ) = eTlo-t(gl £ ) = e (971g, fu )iz, =0 (4.32)
Comparing Egs. (4.30) and (4.32), we find
0719, Tee o, Y- = €071, fu Jn+@®) (4.33)

whered—'g e A,. Itis easy to check that in Eq. (4.33) itis possible to replace the
stated ~g by any element oH *(R), hence we find that

Teief, =e'f, t>0, f, € H(R) (4.34)
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Equation (4.34) implies that the application of the extended evolatitho) ! to
the generalized eigenstaté* ) correspond to the application, l*(R), of the
Toeplitz operatoff-ie: to its eigenfunctionf,_ € H(R).

Comparison of Egs. (4.30)—(4.34) with the structure described in section 3,
and especially Egs. (4.30) and (3.8), demonstrates clearly that both in the RHS
formalism and in the Lax—Phillips theory the free evolution is associated with the
same translation semigroup of Toeplitz operators. Some of the eigenvectors of
this semigroup are identified eventually as corresponding to the decaying resonant
states. In the case of the Lax—Phillips theory the mechanism for this identification
is described in section 3. The corresponding mechanism for the RHS model is
discussed below. A comparison between the two reveals surprising relations.

4.5. Extension of the Full Hamiltonian and Its Resonance Eigenstates

We turn now to a discussion of the resonance states of the full, interacting,
HamiltonianH. One defines two RHS, as in the case of the free Hamiltonian
Hg, suitable for the definition of the extensidh* of the full Hamiltonian. To
define these spaces, an extension of thalé‘wave operators is needed. The
basic assumptions at the beginning of subsection 4.2 include the existence and
asymptotic completeness of theolMer wave operators. Asymptotic completeness
implies that

Hac = Q@ H (4.35)
whereQ* are the Miller wave operators arld,.is as in subsection 4.2. We define
ot =Qto,, O =Q"d_ (4.36)

whered_. are the “smaller” spaces of the Gel'fand tripléts ¢ H c @3 defined
in subsection 4.2 (see, for example, Eq. (4.3)). One can show (Bohm and Gadella,
1989) that

T C Hae C (@)%, @ C Hae C (@) (4.37)

are RHS. The extension of thediliér wave operators is achieved via the following
definitions

(BIFL) = (QFBI(QT)Fy),  Voed,, Fpe(o) (4.38)
(PIF) = (Q P|(Q)F.), Voed_, F_e (@)  (4.39)
Using the definitions (Eq. (4.38) and (4.39)), one has immediately
Q) Fp e (@), Q) F_ e (@), F_ € &, F_ € & (4.40)
In fact, it is possible to show further that
@) (@) = (@1)*, (@) (@) =(27)" (4.41)
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Denote the restriction of the full Hamiltonid# to Hyc by H’. ThenH’ has the
same properties od* asHyon ®., i.e.,

1”. H'®* c o*.
2’. H'is e.s.a. onb™.
3”. H’is a continuous opertor ch*.

Then, by the same procedure that was applied abov t(see Eq. (4.14)) it is
possible to define the extensiontéfto (d*)*. The defining relation is

(H9|F) = (pI|H)*F), ¢ e d*, F e (%)~ (4.42)

We have shown above the existence of a functigmal) satisfying Eq. (4.15)
(existence of the functionay, ) can be shown in a similar manner). Following
Egs. (4.38)—(4.41), we denote

) = (%) |wx) (4.43)
We have then
(QI(H) @) = (gI(H)*(27) 0x) = () *H'glox)
= (Ho() "glws) = () gHF 01) = 0 (2F) 'glw:)
= 04 {gl(NF) ws) = wi(gloT) (4.44)
for g € ®* and, hence,
(H) |0™) = wilo®) (4.45)

As in the case of the free evolutiohl()* generates fot > 0 an evolution semi-
group

(gle ™ot = e glwT), gedt, t=0 (4.46)

Consider now the representation of Eq. (4.46) in terms of the RHSC
L2(R*) c DX. Thus, we apply the mag (and its extensiot/*) and find, using
Eqg. (4.44) and Eq. (4.30)

(gle” ™M wt) = (€PH(QT) gloy) = (U™ QM) TglUw,)
= (@MU gl 1) = (U (@) g e X )
= (07U g, Tee f,, )H+(R) (4.47)
Furthermore, we have
(glo™) = (@) "gloy) = (U(QF)'glUo,)
= (U@ glf)) = 0'u@) g, fo)nry  (4.48)
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and we see that the application of the extended (full) evoluwiod)™, t > 0
to the generalized eigenstate’) correspond to the application of the Toeplitz
opertorTe-e: on H*(R) to the eigenfunctiorf,,, € HT(R).

After the appropriate machinery has been developed in this and previous
subsections, itis possible to introduce the RHS model for resonances. This is done
in the next subsection. The relation of the mathematical structure of the RHS model
of resonances to that of the Lax—Phillips scattering theory is then made explicit.

4.6. The RHS Model of Resonances and the Mathematical Structure of the
Lax—Phillips Scattering Theory

Letusfirstcomplete the RHS model for resonances. The existence and asymp-
totic completeness of the dlér wave operators guarantees the existence and uni-
tarity of the scattering operat&= (£27)'Q". Consider a generic matrix element
of S

@°", SY™Mn = (@* (@) YNy
— (Q‘¢°”t, Q+I//in)H, d)out, 1//in cH (4_49)

To make use of the RH®. C H C ®J, the definition Eq. (4.36), and the RHS
of Eq. (4.37), we take®" € ®_ andy/™ € &, (then, according to Eq. (4.36), we
have 2 ¢) € @, (QTy) € dT).

We can now use the unitary mapof Eq. (4.1) to write the matrix element
of Eq. (4.49) in the form

@°", Y™ = (Ug™", USU U ™) Lo(rey (4.50)

since¢® € ®_ we haveU¢°' e D, and, similarly,Uy™ € D_. According to
the nuclear spectral (Gel'fand—Maurin) theorem we can use the corresponding
complete sets of generalized eigenvectors and write

(U™)(E) = (E_1¢™),  (Uy™)(E) = (E4|y™) (4.51)
where
= [ dEENET)  feD
and i
|g>=/0°odE|E+><E+|g> geD.

We note also that, sindé¢®" € D, we have U¢°)* € D_. Therefore, both
(EL|¥™ and (¢°“|E_) can be extended to Hardy class functions in the lower
half-plane or, more precisely, to functionsAn, .
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Calculating the “energy representation” matrix elemétgs/~* in Eq. (4.50),
we obtain the well-known “energy representati®E) of the S-matrix. FOE > 0
the functionS(E) is a boundary value of a functiofw) (e« complex) analytic
above the cut oiR,.. Thus we obtain

(™Sy™My = /O dE(*YE_)(E, [y S(E +ic) (4.52)

Making use of the definitions Eqgs. (4.38) and (4.39) and Egs. (4.40) and (4.41) we
can write

(@UE_) = (Q ¢°M(Q7)“E_) = (2 ¢°ME") (4.53)
and
(YMEy) = (QTyM(QT) Ey) = (QTy M ET) (4.54)

where|E™) = (Q7)*|E_), |E*") = (Q1)*|E,). With the help of Egs. (4.53) and
(4.54) we rewrite Eq. (4.52) in the form

@, Sy = / dE(Q ¢ E")(ET|QTy™™) S(E +ie) (4.55)
0

To complete the RHS model for resonances, we need to assume certain properties
satisfied by the analytic continuation of the functiS(E + i€) from above the

cut on the positive real axis to the lower half-plane of the second Riemann sheet.
We denote the analytically continued function §y(w). Then the assumption is
(Bohm and Gadella, 1989) th&t (w) is polynomially bounded at infinity, i.e., that
there exists some polynomical functi®{w), @ € C, such that

1Si(@)] = [P(@)l,  lol> Ro (4.56)

for someRy > 0.

For simplicity we assume that we are dealing with only a single resonance,
associated with a simple pole of tBematrix in the second sheet lower half-plane.
Then§, (w), Im(w) < 0 is meromorphic in the second sheet lower half-plane and
is bounded by a polynomial growth &s| — oo.

Consider the following integral defined in the second Riemann sheet

/C oo (2 ™) (2™ S) () (4.57)

whereC is a small circle in the second Riemann sheet, enclosing the location of
the pole ofS, (w) which we take to be at the poiat= Zr. We note that according

to the assumptions specified above the argument of the integral in Eq. (4.57) is
such that the integral is well defined. The residue theorem then implies that we
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have
fc do(Q~ ™o ) (01 Y™ S (w)

= —27i (¢ ZRN(ZE 1T "M Res[Si (), Zr]

The same assumptions allow us to deform the cigcieto a contoulC’ consisting

of a straight segment in the second sheet, just below the real axis, and an arc, the
radius of which we can take to infinity. The polynomial bound on the growth of
Si(w) then ensures that the integral on the arc does not contribute when its radius
is taken to infinity. Thus we obtain

/ T EQ 6P(E — 1€ W(E —ie) 12 Y SI(E — i€)

= —27i (Q ™ ZRN(Z{IQ ") Res[Si (@), ZR] (4.58)

The analyticity properties 0§, (w) imply that we can cross the cut d®&" and
obtain

/m dE(Q ¢ E")(ET|QT ¢ S(E —ie)
0

0 .
. / dE(Q ¢ E ) (E* | Y™ S, (E)
—27i (¢ M ZR)(ZE I ¥ ") Res[Si (w)), ZR] (4.59)
Denote
¢7 — Q—(pout, w+ — Q-Q—,(pin (460)

where¢™ and Y+ are the interacting states corresponding asymptoticalp?to
andy'" fort — 400 andt — —oo respectively. With Egs. (4.60) and (4.55) we
can write Eq. (4.59) as

. 0
@ ¥ = (6 SYM = —( | ( / dE|E-><E+|s.(E)) )

—27iRes[Si(@)), Zrl(d ™ IZRNZRIVT) (4.61)

We can then say that

0
- / dE|E")(E*|Si(E) — 2riRes[G (), ZRlIZR)(Z4]  (4.62)

spans, in the sense of Egs. (4.59) and (4.60), the space of interacting states. The
secondtermin Eq. (4.62) is identified as the resonant state. We see from Eq. (4.46)
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that
e zp) =e'2RZg),  t=>0 (4.63)

We now cast the development of the RHS model for resonances into the language
of the general mathematical context of the Lax—Phillips scattering theory. We start
with an analysis of the assumed properties of $matrix as given above. We

first note that in Eq. (4.52%(E + i€) is the boundary value oR" of a function

S(w) analytic in the first sheet upper half-plane above the cut. The unitarity of the
S-matrix implies that onR™ we have|S(E)| = 1. The analytic continuation of

S(w) to the lower half-plane acrod’* is then given by

Si@) = (S@)™", Imw<o0 (4.64)
Denotew’ = w, Imw < 0. Equation (4.64) implies the following:
Si(@)] = [(S' (@) = [(S' (@) = IS = (@) (4.65)
and so
|S(@)] = |Si(@)| ™ (4.66)

To proceed at this point, we make one more assumption on the beha@pugf

in addition to the polynomial growth restriction of the RHS model, Eq. (4.56).
Suppose that there is a constént 0 such thatS, (w)| > C forallimw < 0. In

this case we have, using Eq. (4.66),

IS@) =Si@)<C, o= Imw'>0 (4.67)

and we find thatS(e") is a bounded analytic function on the first sheet upper
half-plane. The limit of this function on the real axis is then also bounded and
this implies thatS(w) cannot have bound state poles on the negative real axis.
We see that the condition Eq. (4.67) is rather strong and limits the class of mod-
els which can be considered. However, this assumption enables us to use very
powerful tools from the theory oHP spaces and obtain some surprising re-
sults, as we shall see presently. These results, in turn, serve as motivation for
the construction of a more general structure. We note that the restricting as-
sumption does allow us to consider simple models of resonance scattering, for
example, a simple (Friedrichs, 1950) model in which the pertubed Hamilto-
nianH has a continuous spectrum equalR®, a resonance pole and no bound
states.

Denote the space of all bounded analytic functions on the upper half-plane by
H*([]). Putting forward the condition in Eq. (4.67), we can wise H>(]]).
We then continue by introducing several definitions and theorems concerning
HP spaces of functions on the upper half-plane (the theory of scalar valited
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functions can be found, for example, in Duren, 1970; Hoffman, 1962. For the
vector-valued case, see Rosenblum and Rovnyak (1985) or Nikol'skii (1985).

Definition(the spacesi P(J])). The space of analytic functions on the upper half-
plane such thatf (x +iy)|P(0 < p < o0) is integrable orx for eachy > 0 and

+o0 1/p
sup{/ |f(x+iy)|pdx} <C
y>0 —00

for someC > 0 is called aH P(]]) space (< p < o). We note that iff S ()|
rises fast enough as| — oo in the lower half-plane (i.e]S(w)| falls fast enough
on the upper half-plane) we may haS8gv) € HP([]) for some 0< p < oo.

We state several theorems providing the structure of a fundtianH P([ ]),
p> 0.

Definition(Blaschke product). A Blaschke product on the upper half-plane is an
analytic functiorb(z) on [ of the form

—i\m 2 -
b(z):(z |> 1—[|zl+1| zZ— 2z, (4.68)

z+i) 11241 z2-7

Herem is a nonnegative integer azd, Im z, > 0, are zeros ob(z) in [], finite
or infinite in number.

Theorem A. If f e HP(J)(O0< p <o0) and f= 0, then f(z) = b(2)g(2),
where dz) is a nonvanishing H([]) function. The boundary value function on
R satisfiegg(x)| = | f (x)| a.e., xe R. The function (z) is a Blaschke product of
the form given in Eq. (4.68) and, are the zeros (z i) of f in[].

We define a scalar inner function &h This definition is to be compared with
the properties of the Lax—Phillip§-matrix, which is a more general, operator-
valued inner function.

Definition (inner function). A functionf, analytic in the upper half-plane, with
the property f(2)| < 1 for z > 0 and such that the boundary value functionf of
on R satisfied f (x)] = 1,x € Ra.e. is called an inner function (f¢f).

Definition(singular inner function). A singularinnerfunction (pf) is afunction
of the form

00 —Z

s(z):exp{i /m 1t+tzdv(t)}, ze[] (4.69)

wheredv(t) is a singular measure dR.
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Theorem B (canonical factorization of an inner function)Every inner function
onJ], fin(2) # O, can be factorized in the form

fin2) = €°b(2)s(z), ze[] (4.70)

wherea > 0, b(2) is a Blaschke product, and® is a singular inner function.

Definition (outer function). An outer function off[ is a function of the form

- 1 [t 14tz logo(t)
— aV —] — .
G(2) = exp{ = /_OO Y dt} (4.71)

for some real) and some measurable functie(t) > 0 with the properties

+o0 +00 p
a f oge®) 415 o b, / LOF 4« o @72)
oo 1412 oo 1412

Theorem C (canonical factorization theorem)Every function {z) of the class
HP(]), 0< p < oo, has a unique factorization into an inner and outer functions,
i.e., there exists a factorization of(4) of the form

f(2) = fin(@) fou(2) = €*7D(2)s(2)G(2) (4.73)

where Ifz) is a Blaschke product(g) is a singular inner function, &) is an outer
function with the condition (b) of Eq. (4.72) replaceddyy LP. Conversely, each
product of such factors belongs toP{ ]).

Application of Theorem A above t§w), Imw > 0 satisfying Eq. (4.67) (i.e.,
whenS(w) € H*(]])) shows that in this cas®§(w), @ € [] has the factorization

Sw) = Bs@)Sw), we]] (4.74)

whereBg(w) is a Blaschke product providing all the zerosS¢b) in the upper half-
plane andS(w) is nonvanishing ofl. If, in addition,| S(w)| falls fast enough on the
upper half-plane, such th&w) € HP(] ]) forsome 0< p < oo (i.e.,|Si(w)| rises
fast enough afv| — oo in the lower half-plane), then we can apply Theorem C
and find

S(w) = Sn(w)Su(w) = gee BS(w)%ing(w)Sbut(w)a Imw> 0 (4.75)
whereS;ing(w) is the singular part 0§, (w) and in Eq. (4.74)
~S(a)) =g &ing(w) Sut().

Let us consider a situation wheBg(w) in the canonical factorization &w)
is a simple, single Blaschke factor (this corresponds to a single simple resonance
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as we shall see below).
|22R + 1| - ZR
Z:+1 ow-—1Zg

In this case we find tha®(w), the analytic continuation of th&-matrix into the
upper half-plane, takes the form

|Z%~I—1| w
Zi+1

and the Blaschke factor provides the only zer&@f) in the upper half-plane (the
same factor generates the second sheet pole of the analytic continGaign
of S(w) to the second Riemann sheet). The RHS mddlahatrix is then the
boundary value ofS(w) on R™ (under the added assumptions §n(w) men-
tioned above). Conversely, given the RHS md8ehatrix, we may extend it to an
analytic function on the upper half-plane such t8@b) is a well-defined operator
S(w) : HP([T) - HP(D.

Finally, to conclude the argument, we need one more theorem from the theory
of HP functions

Bs(w) =

, ImzZg< 0 (4.76)

S(a)) — eiozw

‘ER%@mamm,lmw>o 4.77)
- R

Theorem D. Let f e HP(1 < p< oo)and f 0. Let f, be the inner part in
the canonical factorization of f. Then

fHP = fiaHP (4.78)

According to Theorem D the action &w), in the form given in Eq. (4.75)
or (4.77), as a multiplicative operator on the Hardy sphtéR) give

SH*(R) = ShH*(R) (4.79)

where§, is the inner part of.

We have seen that the action of the extension of the full evolution semigroup
e ()"t t > 0, on the generalized eigenstate, ) correspond to the action of
the semigroup of Toeplitz operatofig-ie: on the eigenfunctiorf,,, € H*(R).
The discussion in sections 2 and 3 (particularly Egs. (3.8) and (3.9)) shows that the
same correspondence exists between the semig@iqi: > o defined on the Lax—
Phillips Hilbert space (see Eqg. (3.1)) and its representation in the outgoing spectral
representation of the Lax—Phillips scattering theory. Equation (4.79) shows that
with a given RHS modeS-matrix (satisfying certain conditions) we can associate
a unigue operator ol *(R), i.e.,

SRHS N Sn
where Sf"S is the RHS modeB-matrix andS, is its inner part. Furthermore, as

in the case of the semigroup, one finds in the Lax—Phillips scattering theory an
object corresponding t§,, i.e., the Lax—PhillipsS-matrix.
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We go onto show that the proof of the main theorem of the Lax—Phillips theory
(theorem C of section 2) enables us to identify the eigenvectors of the semigroup
generated by the extended evolution in the RHS modelKLet H*(R) be the
following subspace:

K = H*(R)e SH"(R) = H*(R) & ShsH*(R) (4.80)
(compare with Eq. (3.12)) then we can define a Lax—Phillips-type semigroup
Z(t) = Tet|K, t>0 (4.81)

In the case of scalar functions with which we are dealing here the Lax—Phillips
theorem reduces to the statement that the eigenvaluéemborrespond to zeros

of Sn(w) in the upper half-plane, or poles of its analytic continuation to the lower
half-plane. From Eq. (4.77) we see that the only zer§gv) in the upper half-
plane, which according to Theorem A in this section is also the only zeSg0f

is at Zg. The analytic continuation d§(w) to the lower half-plane of the second
Riemann sheet through Eq. (4.64) (see also Eqg. (2.8)) implies that the location of
the pole is aZg. From the proof of the Lax—Phillips theorem we deduce that the
corresponding eigenvector &ft) is given by

f7.(E) = fr, e K (4.82)

i
E—Zr'
which is exactly the generalized eigenvector of the evolution semigroup generated
by e ')t t > 0in the Hardy RHS.

It should be emphasized at this point that one can generalize the structures
and arguments given in this section to the more general case of vector-valued and
operator-valued functions, using the theory of vector- and operator-védited
functions. Amongst other things the discussion of section 4 gives a small glimpse
into the powerful structure of the theoryldff functions and its potential utilization
within the framework of quantum scattering theory.

5. CONCLUSIONS

After an introduction to the Lax—Phillips scattering theory in section 2 some
parts of the mathematical structure of this theory were put into a more general
mathematical context in section 3. Then, in section 4 the RHS model for quantum
mechanical resonances was revisited. Itis shown in section 4 that, atleast for certain
simple qguantum mechanical scattering problems, the evolution semigroup of the
RHS model, as well as its eigenvalues, eigenvectors, and their relation to poles of
the S-matrix in the second Riemann sheet exhibit close links to the mathematical
structure of the Lax—Phillips scattering theory. These relations between the theories
suggest that there may exist a framework which combines the favorable properties
ofthe two theories, i.e., the applicability of the RHS construction to a wide range of
guantum mechanical resonance scattering problems and the Hilbert space structure
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of the Lax—Phillips theory. As mentioned in the Introduction, such a framework
has been suggested and the consequences of its application to the description of
quantum mechanical resonances are explored elsewhere (Strauss and Horwitz, in
preparation).
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