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The rigged Hilbert space formalism of quantum mechanics provides a framework in
which one can identify resonance states and obtain the typical exponential decay law.
However, there remain questions of the interpretation and extraction of physical infor-
mation through the calculation of expectation values of observables. The Lax–Phillips
scattering theory provides a mathematical construction in which resonances are assigned
with states in a Hilbert space, thus no such difficulties arise. The original Lax–Phillips
structure is inapplicable within standard nonrelativistic quantum theory. Through the
powerful theory ofH p spaces certain relations between the two theories are uncovered,
which suggest that a search for a “unifying” framework might prove useful.
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1. INTRODUCTION

Recent years have seen a rising interest in the rigged Hilbert space (RHS)
description of quantum mechanical resonances. It is found that within the RHS
structure8 ⊂ H ⊂ 8× (whereH is the quantum mechanical Hilbert space) uti-
lized by this theory it is possible to assign to a quantum mechanical resonance a
state in8×, the “larger” sector of the Gel’fand triplet (Bailey and Schieve, 1978;
Baumgartel, 1975; Bohm, 1986; Bohmet al., 1989; Bohm and Gadella, 1989;
Horwitz and Sigal, 1978; Parraviciniet al., 1980). This state then exhibits a semi-
group evolution law under the evolution generated by the extensionH× of the
Hamiltonian to8×. In particular, one obtains the typical exponential decay of the
time evolution of the resonance. These properties, which are unattainable within
the standard quantum mechanical Hilbert space formulation of the problem, via
the Wigner–Weisskopf model (Weisskopf and Wigner, 1930), renders the model
for resonances thus obtained particularly appealing. However, the representation

1 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv
University, Ramat Aviv 69978, Israel.

2 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

2285

0020-7748/03/1000-2285/0C© 2003 Plenum Publishing Corporation



P1: GXB

International Journal of Theoretical Physics [ijtp] PP994-ijtp-473601 November 20, 2003 22:19 Style file version May 30th, 2002

2286 Strauss

of the resonance obtained in the RHS formalism is in a Banach space which does
not coincide with the quantum mechanical Hilbert space, and does not have the
properties of the Hilbert space, such as the existence of a scalar product and the pos-
sibility of calculating expectation values. One cannot compute physical properties
other than the lifetime in this way.

The Lax–Phillips scattering theory (Lax and Phillips, 1967), originally de-
veloped for the description of resonances in electromagnetic or acoustic scattering
phenomena, has been used as a framework for the construction of a description
of irreversible resonant phenomena in the quantum theory (this is referred to as
the quantum Lax–Phillips theory). As in the RHS formalism, this theory leads
to a time evolution of resonant states which is of semigroup type, exhibiting the
exponential decay law for the resonance. In principle the quantum Lax–Phillips the-
ory (Eisenberg and Horwitz, 1997; Horwitz and Piron, 1993; Strauss and Horwitz,
2000a,b) provides the possibility of constructing a fundamental theoretical descrip-
tion of the resonant system. The utilization of the mathematical structure of the
original Lax–Phillips theory ensures that the resonance is represented as a state in a
Hilbert space. In this way one retains the interpretation of the quantum mechanical
state of the system, enabling the calculation of expectation values of observables.

Although the quantum Lax–Phillips theory was found to provide a proper de-
scription for nonrelativistic open quantum systems and certain relativistic quantum
mechanical models, the fact that the theory necessitates a generator of evolution
with a spectrum which is unbounded from below, makes it inapplicable within the
framework of standard nonrelativistic quantum mechanics.

In this work I consider the RHS model for quantum mechanical resonances
developed by A. Bohm and M. Gadella (Bohm, 1979a,b, 1980, 1981; Bohm and
Gadella, 1989; Gadella, 1983a,b, 1984). It is my purpose to show that a close
examination of the mathematical structures of the RHS model for resonances and
the Lax–Phillips scattering theory reveals a strong relation in their description
of resonances. In a sense one can say that the RHS model “reaches out” into
the Lax–Phillips Hilbert space to obtain the desired exponential decay, semigroup
evolution, and its connection to poles of theS-matrix in the second Riemann sheet.
These observations bring up the possible existence of a “unifying” framework
which inherently includes the advantages of both of the theories with which we
are concerned here. Such framework has been proposed and the full consequences
of its application to the description of resonances are explored elsewhere (Strauss
and Horwitz, in preparation).

The outline of the rest of this paper is as follows. In section 2, I describe the
Lax–Phillips scattering theory. Section 3 provides some of the broader mathemat-
ical context giving rise to the structure of the Lax–Phillips scattering theory. In
section 4, I essentially repeat the construction of the RHS model for resonances.
In the process, key parts of the theory are reformulted in terms of the fundamental
structures found in the Lax–Phillips scattering theory. Thus, it is seen that the
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mechanism of identification of the resonance states and their relation to singular-
ities of theS-matrix in the RHS model and in the Lax–Phillips scattering theory
are strongly related. Conclusions follow in section 5.

2. THE LAX–PHILLIPS SCATTERING THEORY

The Lax–Phillips scattering theory was originally developed by P. D. Lax and
R. S. Phillips for the description of the process of scattering of electromagnetic
waves or acoustic waves off a spatially bounded target (Lax and Phillips, 1967). The
theory, devised for application to hyperbolic partial differential equations (wave
equations), is based on a Hilbert space description of the propagating waves. The
time evolution of these waves is given by a unitary evolution group of operators
defined on the Hilbert space, satisfying several conditions. In the framework thus
developed there arises in a natural way a semigroup defined on a subspace of the
Hilbert space corresponding to waves interacting with the target. One of the main
results of the Lax–Phillips scattering theory is the fact that the eigenvalues of the
generator of the semigroup are associated with poles of theS-matrix of the theory.
It is the existence of the semigroup and the relation between eigenvalues of its
generator and poles of theS-matrix which renders the mathematical framework
of the Lax–Phillips scattering theory particularly attractive for adaptation to the
description of resonances in quantum theory.

Consider a Hilbert spaceH and an evolution group of unitary operatorsU(t)
on H . Suppose that there exists two distinguished subspacesD− and D+ which
have the properties thatD− is orthogonal toD+ and

U(t)D− ⊂ D−, t ≤ 0

U(t)D+ ⊂ D+, t ≥ 0
(2.1)

∩tU(t)D± = {0}
∪tU(t)D± = H

We callD− theincoming subspaceandD+ theoutgoing subspace. D− corresponds
to incoming waves which do not interact with the traget prior tot = 0 andD+
corresponds to outgoing waves which do not interact with the target aftert = 0.
These properties are reflected in the stability properties ofD− andD+ in Eq. (2.1).

Let L2(−∞,∞; N) be the space ofL2 functions defined on (−∞,∞) and
taking their values in a Hilbert spaceN. Ja. G. Sinai (Cornfieldet al., 1982)
proved that if the conditions of Eq. (2.1) hold for the outgoing spaceD+ then the
following theorem holds.

Theorem A (Ja. G. Sinai). if D+ is an outgoing subspace with respcet to a
group of unitary operatorsU(t), then H can be represented isometrically as the
Hilbert space of functions L2(−∞,+∞; N) for some auxiliary Hilbert space N
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so thatU(t) goes into translation to the right by t units, and D+ is mapped onto
L2(0,+∞; N). This representation is unique up to an isomorphism of N.

A representation of this kind is calledoutgoing translation representation
for the groupU(t). An analogous representation theorem holds for an incoming
subspaceD−, i.e., there is a representation in whichH is mapped onto the Hilbert
spaceL2(−∞,+∞; N), D− is mapped ontoL2(−∞, 0; N), andU(t) acts as trans-
lation to the right byt units. This representation is called theincoming translation
representation.

For most purposes it is more convenient not to work with the translation rep-
resentations but with two different representations, called spectral representations.
By Fourier transformation of the incoming translation representation and the out-
going translation representation we obtain theincoming spectral representation
andoutgoing spectral representationrespectively. According to the Paley–Wiener
theorem (Paley and Wiener, 1934), in the incoming spectral representation, the
subspaceD− is represented by the Hilbert space of functionsH+N (R) consisting
of boundary values onR of functions in the Hardy spaceH2

N(
∏

). Denoting the
upper half of the complex plane by

∏
, the spaceH2

N(
∏

) is characterized as the
space of analytic vector valued functions on

∏
, taking their values in the auxiliary

Hilbert spaceN, and such that

sup
y> 0

∫ +∞
−∞
‖ f (x + iy)‖2N dx < C

For some constantC > 0. In the outgoing spectral representation the subspace
D+ is represented, according to the Paley-Wiener theorem, by the function space
H−N (R) consisting of boundary values of functions inH2

N(
∏̄

), a Hardy space of
vector valued functions (taking values inN) on the lower half-planē

∏
.

Let W+ andW− denote the operators that map elements ofH to their outgo-
ing, respectively incoming, translation representers. We call the operator

SL.P. ≡W+W−1
− (2.2)

the abstract scattering operatorassociated with the groupU(t) and the pair of
spacesD− and D+. It was proved by Lax and Phillips thatSL.P. is equivalent to
the standard definition of the scattering operator. The abstract scattering operator
has the following properties:

a) SL.P. is unitary;
b) SL.P. commutes with translations; and
c) SL.P. mapsL2(−∞, 0; N) into itself.

Property (b) is due to the fact thatSL.P. is a map between two translation repre-
sentations. One can understand property (c) by noting that in the incoming trans-
lation representation the subspaceD− is identified with the space of functions
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L2(−∞, 0; N) and in the outgoing translation representationD+ is represented as
L2(0,+∞; N). The orthogonality ofD− andD+ then implies that in the outgoing
representationD− is represented by a subspace ofL2(−∞, 0; N) and property (c)
above follows.

Going over to the spectral representation the scattering operator transforms
intoSL.P. ≡ FSL.P.F−1, whereF is the Fourier trasform operator. Properties (a)–(c)
above then imply corresponding properties forSL.P.:

a′) SL.P. is unitary.
b′) SL.P. commutes with multiplication by scalar functions.
c′) SL.P. mapsH+N (R) into itself.

According to a special case of a theorem of Foures and Segal (1955), an operator
satisfying properties (a′)–(c′) can be realized as a multiplicative, operator-valued
functionS(σ ) (with σ ∈ R), mappingN into N for eachσ ∈ R and satisfying

a′′) S(σ ) is the boundary value of an operator valued functionS(z) analytic for
Im z > 0;

b′′) ‖S(z)‖N ≤ 1 for Im z > 0; and
c′′) S(σ ), σ ∈ R is, pointwise, a unitary opertor on the auxiliary Hilbert spaceN.

Lax and Phillips define a family of operators{Z(t); t ≥ 0} by

Z(t) ≡ P+U(t)P−, t ≥ 0 (2.3)

HereP+ is the orthogonal projection ofH onto the orthogonal complement ofD+
andP− is the orthogonal projection ofH onto the orthogonal complement ofD−.
From the definition Eq. (2.3) it is evident that (for anyt) Z(t) annihilatesD− and
its range is orthogonal toD+. For any elementf ∈ D+ andt ≥ 0 we have, using
the stability properties ofD+ from Eq. (2.1)

Z(t) f = P+U(t)P− f = P+U(t) f = 0

hence the subspaceD+ is annihilated byZ(t). Furthermore, for anyf ∈ D− and
anyg ∈ H we have

( f, Z(t)g)H = ( f, P+U(t)P−g)H = (P+ f, U(t)P−g)H

= (U†(t) f, P−g)H = (P−U(−t) f, g)H (2.4)

The stability properties ofD−, Eq. (2.1), and the definition ofP− then implies that

( f, Z(t)g)H = 0, f ∈ D−

and we find thatD− is not in the range ofZ(t). We conclude that the family
{Z(t); t ≥ 0} annihilateD− andD+ and take the subspaceK = H ª (D− ⊕ D+)
into itself.
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It is easily proved that the family of operators{Z(t); t ≥ 0} forms a continuous
semigroup. Considering a vectorf ∈ K , we have

Z(t1)Z(t2) f = P+U(t)P−Z(t2) f = P+U(t)Z(t2) f

= P+U(t1)P+Z(t2) f, t1, t2 ≥ 0 (2.5)

The stability properties of the subspaceD+, Eq. (2.1), imply the following identity:

P+U(t)(I − P+) = 0, t ≥ 0 (2.6)

Inserting this identity into the previous equation, we find

Z(t1)Z(t2) f = P+U(t1)P+U(t2) f = P+U(t1)[(I − P+)+ P+]U(t2) f

= P+U(t1)U(t2) f = P+U(t1+ t2)P− f

= Z(t1+ t2) f, t1, t2 ≥ 0, f ∈ K (2.7)

Lax and Phillips prove the following theorem, providing further properties of the
semigroup{Z(t); t ≥ 0}.

Theorem B. The operators{Z(t); t ≥ 0}annihilate D+ and D−, map the orthog-
onal complement K= H ª (D− ⊕ D+) into itself, and form a strongly continuous
semigroup (i.e.,Z(t1)Z(t2) = Z(t1+ t2)) of contraction operators on K . Further-
more,Z(t) tends strongly to zero as t→∞: limt→∞ Z(t)x = 0 for every x in
K .

Henceforth, the family of operators{Z(t); t ≥ 0} will be called the Lax–Phillips
semigroup. The operator-valued functionS(z), with properties (a′′)− (c′′) above,
will be called the Lax–Phillips S-matrix. Properties (a′′)− (c′′) characterize the
Lax–Phillips S-matrix as an analytic function on the upper half-plane. The analytic
continuation ofS(z) to the lower half-plane is given by

S(z) ≡ [S†(z̄)]−1, Im z < 0 (2.8)

One of the main results of the Lax–Phillips scattering theory is the following
theorem proved by Lax and Phillips.

Theorem C. LetB denote the generator of the semigroupZ(t). If Imµ < 0, then
µ belongs to the point spectrum ofB if and only ifS†(µ̄) has a nontrivial null
space.

This theorem establishes a very important relation between the eigenvalues of the
generatorB of the Lax–Phillips semigroup and poles of the analytic continuation
of the Lax–Phillips S-matrixS(z) to the lower half-plane. This theorem provides
a motivation for the use of the framework of the Lax–Phillips scattering theory
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for the description of quantum mechanical resonances. It enables the possibility
of associating certain, well-defined, vectors in a Hilbert spaceH, with resonance
poles of the S-matrix, such that these vectors are eigenvectors of an evolution
semigroup related to the unitary evolution group onH .

The proof of the theorem above is illuminating and is referred to again later
on. Therefore, we reproduce it here (Lax and Phillips (1967) provide both this
version and a second version of the proof in their book.

Proof: Let x be an eigenvector of the generatorB of the Lax–Phillips semigroup
with eigenvalueµ

Bx = µx (2.9)

then

i
d

dt
Z(t)x = BZ(t)x = Z(t)Bx = µZ(t)x

and so

Z(t)x = e−iµt x, t ≥ 0 (2.10)

As indicated above the domain ofB contains vectors inK ⊂ H . In the out-
going representation the Hilbert spaceH is represented by the function space
L2(−∞,+∞; N) which we take to be functions of the real parameters (s ∈ R).
Vectors inK are then represented by continuous functions inL2(−∞, 0; N) and
are supported ons ≤ 0. Let f represents, in this representation, an eigenvector
x ∈ K of B. In the outgoing translation representation Eq. (2.10) is transformed
into

f (s− t) = e−iµt f (s), s ≤ 0, t ≥ 0 (2.11)

we sets= 0 and find

f (−t) = e−iµt f (0), t ≥ 0

Denoten = f (0) ands= −t , then

f (s) =
{

eiµsn s≤ 0

0 s > 0
(2.12)

Equation (2.12) is the general form for the outgoing translation representer of
an eigenvector ofB. Now, in the incoming translation representation the sub-
spaceD− ⊂ H is represented byL2(−∞, 0; N). When mapped to the outgoing
translation representation, this subspace is represented bySL.P.L2(−∞, 0; N) ⊂
L2(−∞, 0; N). The orthogonalityK ⊥ D− then imply that in the outgoing trans-
lation represention we have

( f, SL.P.k)L2
N (R) = 0, k ∈ L2(−∞, 0; N) (2.13)
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where f is, as above, an outgoing translation representer ofx ∈ K . In the outgoing
spectral representation we obtain

( f̂ , SL.P.k̂)L2
N (R) = 0 (2.14)

wherek̂, f̂ are the outgoing spectral representers corresponding tok and f re-
spectively (below, functions and operators in the outgoing spectral representation
are denoted with a hat), andSL.P is the Lax–Phillips S-matrix in the spectral
representation. Fourier transforming Eq. (2.12) we obtain

f̂ (σ ) = i
n

σ − µ , σ ∈ R (2.15)

Using Eq. (2.15), we write explicitly the scalar product in Eq. (2.14)

0= ( f̂ , SL.P.k̂)L2
N (R) =

∫ +∞
−∞

dσ
(n, S(σ )k̂(σ ))N

σ − µ̄ (2.16)

Since the vector-valued functionS(z)k̂(z) is a Hardy class function, it is possible
to calculate the integral in Eq. (2.16) as a contour integral in the upper half-plane.
The only contribution comes from the pole at ¯µ with the result

(n, S(µ̄)k̂(µ̄))N = 0 (2.17)

Furthermore, the vectork ∈ D− is arbitrary and we conclude thatS(µ̄) has a
positive codimension. This implies thatS†(µ̄) has a nontrivial null space and the
proof is complete. ¤

This concludes the description of the scattering theory developed by Lax and
Phillips. It turns out, though, that in order to complete the analysis of physical
models treated within the framework given here, one needs to put the Lax–Phillips
scattering theory into a more general mathematical context. This is also required
for the purpose of including into the range of applicability of the theory classes
of physical models for which this framework cannot be applied directly. Some
aspects of this, more general, theory are discussed in the next section.

3. MATHEMATICAL BASIS OF THE LAX–PHILLIPS
SCATTERING THEORY

Given a Lax–Phillips structure with an evolution groupU(t) on the Hilbert
spaceH , consider the family of operators{T(t)}t≥0 such thatT(t) : H → H, t ≥ 0,
and

T(t) ≡ P+U(t), t ≥ 0 (3.1)

where, as in section 2 above,P+ is the projection on the orthogonal complement
subspace toD+ in H . Each element of this family of operators annihilates the
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subspaceD+, as can be seen, for example, from Eq. (2.1). Furthermore, noting
that in Eq. (2.7) it is possible to replaceZ(t1), Z(t2), andZ(t1+ t2) by T(t1), T(t2),
andT(t1+ t2), respectively, and the vectorf ∈ K by any vectorf ∈ D− ⊕ K , we
find for any vectorf ∈ D− ⊕ K

T(t1)T(t2) f = T(t1+ t2) f, t1, t2 ≥ 0 (3.2)

and so the family{T(t); t ≥ 0} forms a one-parmeter semigroup. Finally, we ob-
serve from Eq. (2.5) that, forf ∈ K , we have

Z(t1)Z(t2) f = P+U(t1)P+U(t2) f = T(t1)T(t2) f, t1, t2 ≥ 0, f ∈ K (3.3)

where{Z(t); t ≥ 0} is the Lax–Phillips semigroup.
Consider now the Lax–Phillips outgoing translation representation. Denote

the outgoing translation representer of an operatorT(t) from the family defined in
Eq. (3.1) byT̃(t). Given any vector-valued functionf ∈ L2(−∞,+∞; N) in the
outgoing translation representation we have

(T̃(t) f )(s) =
{

f (s− t) s ≤ 0

0 s > 0
, t ≥ 0 (3.4)

Denote the generator of the semigroup{T(t); t ≥ 0} by B′. Repeating the steps
taken in Eqs. (2.9)–(2.12), withT(t) replacingZ(t), we find the spectrum ofB′ to
beσ (B′) = {µ|Imµ < 0}. If the outgoing translation representer ofB′ is denoted
B̃′, then the eigenfunctions of̃B′ are given by

fµ,n(s) =
{

eiµsn s≤ 0

0 s > 0
, ∀µ, Imµ < 0, ∀n ∈ N (3.5)

where fµ,n is an eigenfunction of̃B′ with eigenvalueµ. We find the representation
of the semigroup{T(t); t ≥ 0} and the eigenfunctionsfµ,n in the outgoing spectral
representation. For this we need the definition of a Toeplitz operator on the Hardy
spaceH+N (R) (see, for example Rosenblum and Rovnyak, 1985, and references
therein).

Definition (Toeplitz opertor onH+N (R)). Let W ∈ L∞B(N)(R)(B(N) is the space
of bounded linear operators onN). Let P+ denote the projection ofL2

N(R) on
H+N (R). Then the operatorTW : H+N (R)→ H+N (R) defined by

TW f = P+W f, f ∈ H+N (R) (3.6)

is called a Toeplitz operator (onH+N (R)) with symbolW. HereW is the operator
of pointwise multiplication byW, i.e., (W f)(σ ) = W(σ ) f (σ ), σ ∈ R. We define
the following multiplicative operator

[(ê−i Et ) f ](E) = e−i Et f (E), f ∈ L2
N(R), E ∈ R (3.7)
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and, taking the Fourier transform of Eq. (3.4) and using the definition, Eq. (3.6),
we find in the outgoing spectral representation

T̂(t) f = P+ê−i Et f = Te−i Et f, f ∈ H+N (R) (3.8)

andT̂(t) f = Te−i Et f = 0 for f ∈ H−N (R). The semigroup{T(t); t ≥ 0} is, there-
fore, represented in the outgoing spectral representation, by the Toeplitz operator
with symbole−i Et . Taking the Fourier transform of Eq. (3.5), we find that in the
outgoing spectral representation the eigenfunctions ofT̂(t) = Te−i Et are given by

f̂ µ,n(σ ) = i
n

σ − µ ∀µ, Imµ < 0, ∀n ∈ N (3.9)

Returning to Eq. (3.1) and (3.3), we identify the Lax–Phillips semigroup
{Z(t); t ≥ 0} as the restriction of{T(t); t ≥ 0} to the subspaceK , i.e.,

Z(t) = T(t)|K (3.10)

where

K = H ª (D− ⊕ D+) (3.11)

The Lax–Phillips S-matrix, mapping the incoming representation onto the
outgoing representation, is, from the mathematical point of view, a map of
L2(−∞,+∞; N) onto itself. This map is characterized by its action onH+N (R) ⊂
L2(−∞,+∞; N) (which represents in the incoming spectral representation the
subspaceD−) as an inner function (see secton 4 below). We have, therefore,
SL.P. = Sin for some inner functionSin. The mapping ofH+N (R) by the Lax–
Phillips S-matrix results, therefore, in the subspaceSin H+N (R) (representingD−
in the outgoing representation). The subspaceSin H+N (R) is an invariant subspace
for the action of the translations defined in Eq. (3.7) fort < 0 (this is the stability
property ofD−, since the evolution is represented by translation). From Eq. (3.10)
we infer that in the outgoinging spectral representation the Lax–Phillips semigroup
is represented by the restriction of the semigroup in Eq. (3.8) to the subspace

K̂ = H+N (R)ª Sin H+N (R) (3.12)

that is

Ẑ(t) = T̂(t)|K̂ = Te−i Et |K̂ (3.13)

We see that, in the outgoing spectral representation, the Lax–Phillips semigroup is
given by the restriction of the semigroup of Eq. (3.8) to the orthogonal complement
in H+N (R) of an invariant subspace obtained by the action of an inner functionSin

on H+N (R). The main theorem of the Lax–Phillips theory (Theorem C of section 2)
states that the eigenvalues of the restricted semigroup in Eq. (3.13) are related to
the positive codimension of the inner (operator-valued) functionSin(z) at certain
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points of the upper half-plane (or poles of the analytic continuation ofSin(z) into
the lower half-plane).

We note that the broader mathematical context for the structure just described
is within the Sz. Nagy–Foias theory of contraction operators on Hilbert spaces (Sz.-
Nagy and Foias, 1970). In particular, the Lax–Phillips semigroup is related to the
so-called compression of a shift (for a very thorough treatment of this type of
operators, see Nikol’skii, 1986).

In the following section the RHS theory of resonances and its relation to the
mathematical structure of the Lax–Phillips scattering theory is discussed in the
context of purely spectral models. This simplifies the exposition of the main ideas
due to the fact that in this case one has to deal only with scalar functions. It should
be emphasized that the structures below can be recast into the general form of
vector-valued functions.

4. RHS MODEL OF RESONANCES AND THE MATHEMATICAL
FRAMEWORK OF THE LAX–PHILLIPS THEORY

4.1. Quantum Mechanics in the Rigged Hilbert Space

In the framework of quantum mechanics one assigns to the quantum mechan-
ical system, at each point of time, a state vector in an appropriately constructed
Hilbert spaceH . The physically observable quantities are associated with self-
adjoint operators onH . To complete the description of the physics involved with
the quantum mechanical system, an evolution law is supplied in the form of a
suitable equation of evolution (Schr¨odinger equation in the case of nonrelativistic
quantum theory).

The RHS approach to quantum mechanics is based on the observation that
a Hilbert space constructed for the description of a typical quantum mechanical
system is in a sense both “too big” and “too small.” Such a Hilbert space inevitably
contains “irrelevant” state vectors. There are vectors related to operators which
are observables but which are not physically realizable and, furthermore, there are
self-adjoint operators onH which one would want to associate with observables
but which are unrealizable as physical observables for certain quantum mechanical
systems. Examples are vectors which lie outside the domain of definition of an
observable represented by an unbounded operator (e.g., infinite energy states,
infinite momentum states, etc.) or the position operator for a bound state of an
atom. In addition there are objects which are important in quantum theory and
cannot be included within the standard framework. An important class of objects
which fall into the later category are quantum mechanical resonances, with which
this work is concerned.

With the above observations in mind the RHS formalism is centered on the
construction of a Gel’fand triple (Gel’fand and Vilenkin, 1964)8 ⊂ H ⊂ 8×,
whereH is the quantum mechanical Hilbert space corresponding to the particular
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system considered. The nuclear space8 is dense inH and is endowed with a
topology τ8 which is finer than the norm topology inherited fromH , and the
space8× is the space ofτ8 continuous antilinear functionals on8. As a result
of the application of the Gel’fand–Maurinnuclear spectral theorem, the space
8 has the property that for every e.s.a. (essentially self-adjoint) operator onH
there exists a complete set of generalized eigenvectors and one can implement in
a rigorous way the Dirac formalism. The space8 also has the property that all
algebraic operations with operators are allowed and no questions of domains of
definition arise. With respect to the topologyτ8 on8 the operators corresponding
to physical observables form an algebra of continuous operators.

The fact that, in the RHS formalism, the HamiltonianH is e.s.a. onH (i.e., with
respect to the norm topology onH ) and continuous with respect to the topology of
8enables us to utilize the Nuclear Spectral, or Gelfand-Maurin, theorem (Gel’fand
and Vilenkin, 1964). This guarantees the existence of a complete set of generalized
eigenvectors belonging to8×

〈Hφ|λ〉 = 〈φ|H×λ〉 = λ〈φ|λ〉, ∀φ, λ ∈ 3
where3 is the spectrum ofH, |λ〉 ∈ 8× andH× is the extension ofH to an operator
on the space8× defined by

〈Hφ|χ〉 = 〈φ|H×χ〉, ∀φ ∈ 8, ∀χ ∈ 8×

The completeness of the set of generalized eigenvectors{|λ〉}λ∈3 means that for
everyφ, ψ ∈ 8 and some uniquely defined positive measureµ on3

(φ, ψ)H =
∫
3

dµ(λ)〈ψ |λ〉〈λ|φ〉

with 〈λ|φ〉 = 〈φ|λ〉. Thus, we can formally write

|φ〉 =
∫
3

dµ(λ)|λ〉〈λ|φ〉

However, the RHS model for resonances formulated by Bohm and Gadella forms
a nontight riggingfor the HamiltonianH in a way that enables the identification
of certain elements in the space8× as states corresponding to resonances of
the quantum mechanical system. These states evolve, for timest ≥ 0, according
to a one-parameter semigroup evolution law generated byH×, the extension of
H to 8×. The eigenvectors ofH× corresponding to resonances have complex
eigenvalues and resonances are seen to undergo an exponential decay law for
t ≥ 0.

Despite the fact that the RHS framework allows the possibility of an asso-
ciation of a state with a quantum mechanical resonance, it cannot be said that it
provides a complete satisfactory description of quantum mechanical resonances.
The main difficulty with such states is that they are elements of8×, which is not a
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Hilbert space. Since8× is a space of functionals on8, one can evaluate an element
χ ∈ 8× on an elementφ ∈ 8, i.e., evaluate〈φ|χ〉. However, an inner product of
elements in8× is not defined. If a physical observable is associated with a self-
adjoint operator, sayA, on H , then it is possible to define the extensionA× of A
to an operator on8×, but one cannot extract physical information related to the
physical observable since it is impossible to calculate expectation values ofA× on
elements of8×. The probabilistic interpretation the quantum mechanical states
and the calculation of expectation values corresponding to measurable physical
quantities hold in the quantum mechanical Hilbert space framework and do not
carry over to8×.

As mentioned above, in the mathematical framework of the quantum Lax–
Phillips scattering theory resonances are associated with Hilbert space state vec-
tors. In this case no problems arise with the calclation of expectation values of
observables in the resonant state or with the quantum mechanical probabilistic
interpretation. However, the mathematical structure of the Lax–Phillips scattering
theory is not directly applicable to standard nonrelativistic quantum mechanics.
Originally devised for handling scattering problems within the theory of classical
hyperbolic wave equations, the generator of evolution, which we denote byK ,
in the quantum Lax–Phillips scattering theory, is required to be unbounded from
below with a spectrumσac(K ) = R.

In the next few subsections I will describe in more detail the RHS construction
in quantum mechanics. In the course of this development I will identify some of
the mathematical objects, which are central to the RHS description of resonance
phenomena, as identical to those which are found in the Lax–Phillips scattering
theory. These relations between the two, seemingly unrelated, theories suggest that
a search for a unifying framework, which incorporates the advantages inherent in
the two approaches, might prove fruitful.

4.2. RHS for the Free Hamiltonian H0

Consider a quantum mechanical scattering system exhibiting resonance phe-
nomena. We assume that the model for the system under consideration has the
following properties (Bohm and Gadella, 1989).

1. The resonance scattering process is described by a decomposable Hamil-
tonian

H = H0+ V

whereV is the potential term andH0 is a Hamiltonian describing a free
particle.

2. a) The absolutely continuous spectrum of the HamiltonianH isσac(H) =
R+.
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b) H may have discrete eigenvalues.
c) H does not have a singular continuous spectrumσsc(H) = 0.

H = Hp⊕ Hac

whereHp ⊂ H is spanned by the eigenvectors corresponding to the
discrete eigenvalues andHac, corresponding to the absolutely contin-
uous spectrum, is its orthogonal complement.

3. The Möller wave operators exist and asymptotic completeness holds.

In addition to the requirements above we simplify our analysis by considering a
purely spectral model. This choice is made for the sake of simplicity and clarity
of exposition and implies no restriction on the range of applicability of the theory
for more general cases.

The first step in the RHS formulation of the scattering process is the construc-
tion of two particular RHS, or Gel’fand triplets,8± ⊂ H ⊂ 8×±. We choose these
RHS, out of the many possible triplets8 ⊂ H ⊂ 8×, because of their particular
suitability for the description of resonances. The spaces8± are chosen such that

1. H08± ⊂ 8±;
2. H0 is e.s.a. on8± (i.e.,H0 with the domain8± is e.s.a. onH ); and
3. H0 is a continuous operator on8± (with respect to the nuclear topology
τ8 on8±).

The spaces of functionals8×± are the duals of8±, consisting of continuous anti-
linear functionals respectively on8± (with respect to the topologyτ8 on8±).

A realization of the Gel’fand triple structure in terms of spaces of functions
is achieved by using the spectral representation ofH0. We assumed that the con-
tinuous spectrum ofH0 (denoted naturally byE) is σ (H0) = R+. In this case we
construct, using the Gel’fand–Maurin theorem, a unitary mapU such that

U : Hac→ L2(R+) (4.1)

In this spectral representation the free HamiltonianH0 is represented by

Ĥ0 ≡ UH0U−1 (4.2)

The operator̂H0 acts as multiplication by the independent variable

(Ĥ0φ)(E) = Eφ(E), E ∈ R+

The spaces8± are then realized as spaces of functionsD± given by

D∓ = U8± (4.3)

The unitarity ofU implies that properties 1–3 above are transformed into the
following properties ofĤ0 as an operator onL2(R+):

1′. Ĥ0D± ⊂ D±.
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2′. Ĥ0 is e.s.a. onD±.
3′. Ĥ0 is continuous onD± (with respect to the nuclear topology onD±; see

below).

One can find RHSD± ⊂ L2(R+) ⊂ D×± such thatĤ0 has properties 1′–3′ on D±
respectively.

We turn now to the definition of the function spacesD±. We defineD+ as a
linear space of functions satisfying the following conditions (Bohm and Gadella,
1989):

a. Anyφ ∈ D+ is the restriction toR+ of a function inH+(R) (whereH+(R)
consists of boundary values of functions inH2(5); see section 2).

b. We haveĤ0D+ ⊂ D+ (where (̂H0φ)(E) = Eφ(E) for anyφ ∈ L2(R+))
c. D+ is dense in the Hilbert spaceL2(R+).
d. Ĥ0 is e.s.a. onD+.
e. We endowD+ with a complete nuclear, metrizable topology such thatĤ0

is continuous onD+.
f. This topology onD+ is stronger than the Hilbert space topology which

D+ possesses as a subspace ofL2(R+).

Under these conditions the tripletD+ ⊂ L2(R+) ⊂ D×+ is a RHS and, defining
8− ≡ U−1D+, we have that8− ⊂ H ⊂ 8×− is also a RHS. Moreover, under
conditions a.–f. it is possible to show that, on8−, H0 has the properties 1–3 listed
above.

A function spaceD+ satisfying conditions a–f may be constructed in several
steps. Denoting the Schwartz space of functions onR by S, we consider

S(R−) = { f | f ∈ Sand Supp (f ) = R−} (4.4)

We now define another function space,

1+ ≡ F[S(R−)] (4.5)

whereF is the Fourier transform operator. The Paley–Wiener theorem states that
for a function f ∈ L2(R−) we haveF[ f ] ∈ H+(R). For the space1+ we then
find that

1+ = F[S(R−)] = S∩ H+(R) (4.6)

An important property of the space1+ is the fact that the triplet

1+ ⊂ H+(R) ⊂ 1x
+ (4.7)

is an RHS.
The spaceD+, possessing the required properties a–f, has a simple definition

in terms of the space1+

D+ ≡ PR+1+ (4.8)
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wherePR+ is the projection ofL2(R) on L2(R+). A theorem of Van Winter (1971)
states that any function inH+(R) is completely determined by its values onR+.
This implies the existence of a mapθ such that

θ1+ = D+, θ−1D+ = 1+ (4.9)

The function spaceD+ defined in (4.8) provides us with the desired RHS
D+ ⊂ L2(R+) ⊂ D×+ and, via the mapU, the triplet8− ⊂ H ⊂ 8×−.

As mentioned above, the description of resonance scattering processes re-
quires the definition of two RHS. One of these is defined above, we now define
the second. For this we need the function spaceD−. The spaceD− is defined as a
linear space of functions satisfying a set of conditions obtained by replacingD+
with D− in conditions b–f above and replacing condition a by

a′. Every function inD− is the restriction toR+ of a function inH−(R).

The construction of the function spaceD− is similar to that ofD+. One starts with

S(R+) = {g|g ∈ S and Supp (g) = R+} (4.10)

The next step is to define the space1−

1− ≡ F[S(R+)] = S∩ H−(R) (4.11)

Again, it is important to note that the triplet

1− ⊂ H−(R) ⊂ 1×− (4.12)

is an RHS. The definition ofD− in terms of1− is given by

D− ≡ PR+1− (4.13)

Using Van Winter’s theorem, we can define a one-to-one mapθ̄ such that

θ̄1− = D− (θ̄ )−1D− = 1−
As in the case of the spaceD+ we find thatD− ⊂ L2(R+) ⊂ D×− is an RHS. Using
Eqs. (4.1) and (4.3), we then find the desired RHS8+ ⊂ H ⊂ 8×+.

4.3. Extension of the Free Hamiltonian and Its Complex Eigenvalues

We have described the construction of the two Gel’fand triples8± ⊂ H ⊂
8×± as well as their representations, through the mappingU, in terms of the function
spacesD± ⊂ L2(R+) ⊂ D×± . The RHS structure enables us to extend operators
defined on8± to the dual spaces8×±.

We define the extension to8×± of the unperturbed HamiltonianH0. This is
done using the defining relation

〈H0φ±| f±〉 = 〈φ±|(H0)× f±〉 φ± ∈ 8±, f± ∈ 8×± (4.14)
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One of the main results of the RHS approach to resonance scattering is con-
cerned with the existence of complex eigenvalues for the extension of the Hamil-
tonian (H0)×. In fact, if ω− is complex and Imω− ≤ 0 then there exists a unique
functional|ω−〉 ∈ 8×+ such that

(H0)×|ω−〉 = ω−|ω−〉 (4.15)

Similarly, if Im ω+ ≥ 0, there exists a unique functional|ω+〉 ∈ 8×− such that

(H0)×|ω+〉 = ω+|ω+〉 (4.16)

For eachg ∈ 8− Eq. (4.3) implies thatg̃ = Ug ∈ D+ ⊂ L2(R+) and, using
Eq. (4.9),θ−1g̃ = g′ ∈ 1+ ⊂ H+(R). The Hardy RHS structure of Eq. (4.7) is
used to define continuous linear functionals onD+. This is achieved by the fol-
lowing definition of an extensionθ× of the mapθ of Eq. (4.9):

〈g′| f 〉 = 〈θg′|θ× f 〉 = 〈g̃|θ× f 〉, g′ ∈ 1+, g̃ ∈ D+, f ∈ 1×, θ× f ∈ D×+
(4.17)

Take the function fω− ∈ H+(R) given by fω−(E) = −(2π i )−1(E −
ω−)−1, E ∈ R Im ω− < 0. The RHS structure of Eq. (4.7) implies that we can
considerfω− as an element of1×+. In this case we may apply the mapθ× through
Eq. (4.17),

〈g| f ×ω−〉 = 〈g|θ× fω−〉 = 〈θ−1g| fω−〉 = (θ−1g, fω− )H+(R)

= − 1

2π i

∫ +∞
−∞

dE[(θ−1g)(E)]
1

E − ω− = [(θ−1g)(ω−)] (4.18)

Using the stability property ofD+ under the action of̂H0 (see condition b above),
we obtain

(θ−1[Ĥ0g])(E) = E(θ−1g)(E), E ∈ R (4.19)

With the use of Eqs. (4.19), (4.18), and (4.14), we get

〈g|(Ĥ0)× f ×ω−〉 = 〈Ĥ0g|θ× fω−〉 = 〈θ−1[Ĥ0g]| fω−〉

= − 1

2π i

∫ +∞
−∞

dE E[(θ−1g)(E)]
1

E − ω− = ω−[(θ−1g)(ω−)]

(4.20)

Equation (4.18) together with Eq. (4.20) gives

〈g|(Ĥ0)× f ×ω−〉 = ω−〈g| f ×ω−〉 (4.21)

Sinceg ∈ D+ is arbitrary, we have

(Ĥ0)×| f ×ω−〉 = ω−| f ×ω−〉 (4.22)
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Define the extensionU× of the mapU to8×+ through

〈Ug|U×F〉 = 〈g|F〉, g ∈ 8+, F ∈ 8×+
then, from Eqs. (4.22) and (4.15), we see thatU×|ω−〉 = | f ×ω−〉 hence, we have the
desired generalized eigenvector of the extended free Hamiltonian.

4.4. The Evolution Semigroup in the RHS and in Lax–Phillips Theory

In this subsection our goal is to extract further information concerning the
semigroup behavior emerging within the RHS formalism via of the action ofH×0
on the generalized eigenvectors|ω−〉 (we note again that there exists a unique
generalized eigenvector for each complexω− with Im ω− < 0). We compare this
semigroup to the semigroup of the Lax–Phillips theory and show that, in the
mathematical sense, both theories utilize the same translation semigroup.

We start with a statement which can easily be proved (Bohm and Gadella,
1989), regarding the stability of8± under the action of elements belonging to the
free evolution groupU0(t) = e−i H0t

e−i H0t8− ⊂ 8−, t ≤ 0

e−i H0t8− 6⊂ 8−, t ≥ 0
(4.23)

e−i H0t8+ ⊂ 8+, t ≥ 0

e−i H0t8+ 6⊂ 8+, t ≤ 0

The stability properties of8− under the action ofU0(t) for t ≤ 0 enable us to put
forward the following definition of a semigroup evolution on8×−

〈ei Ĥ0t g|k〉 = 〈g∣∣e−i (Ĥ0)×t k
〉
, t ≥ 0, g ∈ D+, k ∈ D×+ (4.24)

We now apply the definition (Eq. (4.17)) and obtain, in a similar fashion to
Eqs. (4.18)–(4.20),

〈g|e−i (Ĥ0)×t f ×ω−〉 = 〈ei Ĥ0t g| f ×ω−〉 = 〈θ−1[ei Ĥ0t g]| fω−〉

= (θ−1 ei Ĥ0t g| fω− )H+(R) = − 1

2π i

∫ +∞
−∞

dEe−i Et [(θ−1g)(E)]
1

E − ω−
= e−iω−t [(θ−1g)(ω−)] (4.25)

Inserting Eq. (4.18) into Eq. (4.25), we obtain〈
g
∣∣e−i (Ĥ0)×t f ×ω−

〉 = e−iω−t 〈g| f ×ω−〉, t ≥ 0 (4.26)

with the following immediate implication

e−i (Ĥ0)×t | f ×ω−〉 = e−iω−t | f ×ω−〉, t ≥ 0 (4.27)



P1: GXB

International Journal of Theoretical Physics [ijtp] PP994-ijtp-473601 November 20, 2003 22:19 Style file version May 30th, 2002

Resonances in the Rigged Hilbert Space and Lax–Phillips Scattering Theory 2303

Equation (4.27) exhibits a distinct contractive semigroup behavior. The basic mech-
anism through which the RHS method achieves this result is clearly demonstrated.
Utilizing the Gel’fand triple structure to extend the Hamiltonian (the generator of
evolution) to the space of functionals8×, one may find generalized eigenstates of
the extended Hamiltonian, providing the sought for exponential decay law.

To understand better the source of the semigroup law of evolution in Eq.
(4.27), we shall make use of the fact thatH+(R) is a closed subspace ofL2(R)
and

L2(R) = H−(R)⊕ H+(R) (4.28)

In Eqs. (4.24)–(4.26) the functiong is taken to be an element ofD+, and we have
θ−1g ∈ 1+ ⊂ H+(R). RegardingH+(R) as a subspace ofL2(R) and denoting by
P+ the orthogonal projection ofL2(R) on H+(R), we can writeθ−1g = P+θ−1g.
Furthermore, we define a unitary multiplicative operator̂e−i Et : L2(R)→ L2(R)

(ê−i Et f )(E) = e−i Et f (E), f ∈ L2(R) (4.29)

Inserting this information in Eq. (4.25) and taking notice of the fact that the scalar
product inH+(R) is inherited from that ofL2(R), we get〈

g|e−i (Ĥ0)×t f ×ω−
〉 = − 1

2π i

∫ +∞
−∞

dE [(θ−1g)(E)] e−i Et 1

E − ω−
= (θ−1g, ê−i Et fω− )L2(R) = (P+θ−1g, ê−i Et fω− )L2(R)

= (θ−1g, P+ ê−i Et fω− )L2(R) = (θ−1g, Te−i Et fω− )H+(R)

(4.30)

whereTe−i Et is the Toeplitz operator onH+(R) with symbole−i Et defined by (see
Eq. (3.8) for the vactor-valued case)

Te−i Et f = P+ ̂e−i Et f , f ∈ H+(R) (4.31)

On the other hand we have, from Eqs. (4.18) and (4.26),〈
g
∣∣e−i (Ĥ0)×t f ×ω−

〉 = e−iω−t 〈g| f ×ω−〉 = e−iω−t (θ−1g, fω− )L2(R), t ≥ 0 (4.32)

Comparing Eqs. (4.30) and (4.32), we find

(θ−1g, Te−i Et fω− )H+(R) = e−iω−t (θ−1g, fω− )H+(R) (4.33)

whereθ−1g ∈ 1+. It is easy to check that in Eq. (4.33) it is possible to replace the
stateθ−1g by any element ofH+(R), hence we find that

Te−i Et fω− = e−iω−t fω− , t ≥ 0, fω− ∈ H+(R) (4.34)
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Equation (4.34) implies that the application of the extended evolutione−i (Ĥ0)×t to
the generalized eigenstate| f ×ω−〉 correspond to the application, inH+(R), of the
Toeplitz operatorTe−i Et to its eigenfunctionfω− ∈ H+(R).

Comparison of Eqs. (4.30)–(4.34) with the structure described in section 3,
and especially Eqs. (4.30) and (3.8), demonstrates clearly that both in the RHS
formalism and in the Lax–Phillips theory the free evolution is associated with the
same translation semigroup of Toeplitz operators. Some of the eigenvectors of
this semigroup are identified eventually as corresponding to the decaying resonant
states. In the case of the Lax–Phillips theory the mechanism for this identification
is described in section 3. The corresponding mechanism for the RHS model is
discussed below. A comparison between the two reveals surprising relations.

4.5. Extension of the Full Hamiltonian and Its Resonance Eigenstates

We turn now to a discussion of the resonance states of the full, interacting,
HamiltonianH. One defines two RHS, as in the case of the free Hamiltonian
H0, suitable for the definition of the extensionH× of the full Hamiltonian. To
define these spaces, an extension of the M¨oller wave operators is needed. The
basic assumptions at the beginning of subsection 4.2 include the existence and
asymptotic completeness of the M¨oller wave operators. Asymptotic completeness
implies that

Hac= Ω±H (4.35)

whereΩ± are the Möller wave operators andHac is as in subsection 4.2. We define

8+ ≡ Ω+8+, 8− ≡ Ω−8− (4.36)

where8± are the “smaller” spaces of the Gel’fand triplets8± ⊂ H ⊂ 8×± defined
in subsection 4.2 (see, for example, Eq. (4.3)). One can show (Bohm and Gadella,
1989) that

8+ ⊂ Hac⊂ (8+)×, 8− ⊂ Hac⊂ (8−)× (4.37)

are RHS. The extension of the M¨oller wave operators is achieved via the following
definitions

〈φIF+〉 = 〈Ω+φ|(Ω+)×F+〉, ∀φ ∈ 8+, F+ ∈ (8+)× (4.38)

〈φIF−〉 = 〈Ω−φ|(Ω−)×F−〉, ∀φ ∈ 8−, F− ∈ (8−)× (4.39)

Using the definitions (Eq. (4.38) and (4.39)), one has immediately

(Ω+)×F+ ∈ (8+)×, (Ω−)×F− ∈ (8−)×, F− ∈ 8×+, F− ∈ 8×− (4.40)

In fact, it is possible to show further that

(Ω+)×(8+)× = (8+)×, (Ω+)×(8−)× = (8−)× (4.41)
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Denote the restriction of the full HamiltonianH to Hac by H′. ThenH′ has the
same properties on8± asH0 on8±, i.e.,

1′′. H′8± ⊂ 8±.
2′′. H′ is e.s.a. on8±.
3′′. H′ is a continuous opertor on8±.

Then, by the same procedure that was applied above toH0 (see Eq. (4.14)) it is
possible to define the extension ofH′ to (8±)×. The defining relation is

〈H′φ|F〉 = 〈φ|(H′)×F〉, φ ∈ 8±, F ∈ (8±)× (4.42)

We have shown above the existence of a functional|ω−〉 satisfying Eq. (4.15)
(existence of the functional|ω+〉 can be shown in a similar manner). Following
Eqs. (4.38)–(4.41), we denote

|ω±〉 = (Ω±)×|ω±〉 (4.43)

We have then

〈g|(H′)×ω±〉 = 〈g|(H′)×(Ω±)×ω±〉 = 〈(Ω±)−1H′g|ω±〉
= 〈H0(Ω±)−1g|ω±〉 = 〈(Ω±)−1g|H×0 ω±〉 = ω±〈(Ω±)−1g|ω±〉
= ω±〈g|(Ω±)×ω±〉 = ω±〈g|ω±〉 (4.44)

for g ∈ 8± and, hence,

(H′)×|ω±〉 = ω±|ω±〉 (4.45)

As in the case of the free evolution (H′)× generates fort ≥ 0 an evolution semi-
group 〈

g
∣∣e−i (H′)×tω+

〉 = e−iω+t 〈g|ω+〉, g ∈ 8+, t ≥ 0 (4.46)

Consider now the representation of Eq. (4.46) in terms of the RHSD+ ⊂
L2(R+) ⊂ D×+ . Thus, we apply the mapU (and its extensionU×) and find, using
Eq. (4.44) and Eq. (4.30)〈

g
∣∣e−i (H′)×tω+

〉 = 〈ei H0t (Ω+)−1g|ω+〉 = 〈U ei H0t (Ω+)−1g|Uω+〉
= 〈ei Ĥ0tU(Ω+)−1g| f ×ω+〉 = 〈U (Ω+)−1g| e−i (Ĥ0)×t f ×ω+〉
= (θ−1U(Ω+)−1g, Te−i Et fω+ )H+(R) (4.47)

Furthermore, we have

〈g|ω+〉 = 〈(Ω+)−1g|ω+〉 = 〈U(Ω+)−1g|Uω+〉
= 〈U(Ω+)−1g| f ×ω+〉 = (θ−1U(Ω+)−1g, fω+ )H+(R) (4.48)
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and we see that the application of the extended (full) evolutione−i (H′)×t , t ≥ 0
to the generalized eigenstate|ω+〉 correspond to the application of the Toeplitz
opertorTe−i Et on H+(R) to the eigenfunctionfω+ ∈ H+(R).

After the appropriate machinery has been developed in this and previous
subsections, it is possible to introduce the RHS model for resonances. This is done
in the next subsection. The relation of the mathematical structure of the RHS model
of resonances to that of the Lax–Phillips scattering theory is then made explicit.

4.6. The RHS Model of Resonances and the Mathematical Structure of the
Lax–Phillips Scattering Theory

Let us first complete the RHS model for resonances. The existence and asymp-
totic completeness of the M¨oller wave operators guarantees the existence and uni-
tarity of the scattering operatorS= (Ω−)†Ω+. Consider a generic matrix element
of S

(φout, Sψ in)H = (φout, (Ω−)†Ω+ψ in)H

= (Ω−φout, Ω+ψ in)H , φout, ψ in ∈ H (4.49)

To make use of the RHS8± ⊂ H ⊂ 8×±, the definition Eq. (4.36), and the RHS
of Eq. (4.37), we takeφout ∈ 8− andψ in ∈ 8+ (then, according to Eq. (4.36), we
have (Ω−φ) ∈ 8−, (Ω+ψ) ∈ 8+).

We can now use the unitary mapU of Eq. (4.1) to write the matrix element
of Eq. (4.49) in the form

(φout, ψ in)H = (Uφout, USU−1Uψ in)L2(R+) (4.50)

sinceφout ∈ 8− we haveUφout ∈ D+ and, similarly,Uψ in ∈ D−. According to
the nuclear spectral (Gel’fand–Maurin) theorem we can use the corresponding
complete sets of generalized eigenvectors and write

(Uφout)(E) = 〈E−|φout〉, (Uψ in)(E) = 〈E+|ψ in〉 (4.51)

where

| f 〉 =
∫ ∞

0
dE|E−〉〈E−| f 〉 f ∈ D−

and

|g〉 =
∫ ∞

0
dE|E+〉〈E+|g〉 g ∈ D+

We note also that, sinceUφout ∈ D+, we have (Uφout)∗ ∈ D−. Therefore, both
〈E+|ψ in〉 and 〈φout|E−〉 can be extended to Hardy class functions in the lower
half-plane or, more precisely, to functions in1+.
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Calculating the “energy representation” matrix elementsUSU−1 in Eq. (4.50),
we obtain the well-known “energy representation”S(E) of the S-matrix. ForE ≥ 0
the functionS(E) is a boundary value of a functionS(ω) (ω complex) analytic
above the cut onR+. Thus we obtain

(φoutSψ in)H =
∫ ∞

0
dE〈φout|E−〉〈E+|ψ in〉S(E + i ε) (4.52)

Making use of the definitions Eqs. (4.38) and (4.39) and Eqs. (4.40) and (4.41) we
can write

〈φout|E−〉 = 〈Ω−φout|(Ω−)×E−〉 = 〈Ω−φout|E−〉 (4.53)

and

〈ψ in|E+〉 = 〈Ω+ψ in|(Ω+)×E+〉 = 〈Ω+ψ in|E+〉 (4.54)

where|E−〉 = (Ω−)×|E−〉, |E+〉 = (Ω+)×|E+〉. With the help of Eqs. (4.53) and
(4.54) we rewrite Eq. (4.52) in the form

(φout, Sψ in)H =
∫ ∞

0
dE〈Ω−φout|E−〉〈E+|Ω+ψ in〉S(E + i ε) (4.55)

To complete the RHS model for resonances, we need to assume certain properties
satisfied by the analytic continuation of the functionS(E + i ε) from above the
cut on the positive real axis to the lower half-plane of the second Riemann sheet.
We denote the analytically continued function bySII (ω). Then the assumption is
(Bohm and Gadella, 1989) thatSII (ω) is polynomially bounded at infinity, i.e., that
there exists some polynomical functionP(ω), ω ∈ C, such that

|SII (ω)| ≤ |P(ω)|, |ω| > R0 (4.56)

for someR0 > 0.
For simplicity we assume that we are dealing with only a single resonance,

associated with a simple pole of theS-matrix in the second sheet lower half-plane.
ThenSII (ω), Im(ω) < 0 is meromorphic in the second sheet lower half-plane and
is bounded by a polynomial growth as|ω| → ∞.

Consider the following integral defined in the second Riemann sheet∫
C

dω〈Ω−φout|ω−〉〈ω+|Ω+ψ in〉SII (ω) (4.57)

whereC is a small circle in the second Riemann sheet, enclosing the location of
the pole ofSII (ω) which we take to be at the pointω = ZR. We note that according
to the assumptions specified above the argument of the integral in Eq. (4.57) is
such that the integral is well defined. The residue theorem then implies that we
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have ∫
C

dω〈Ω−φout|ω−〉〈ω+|Ω+ψ in〉SII (ω)

= −2π i 〈Ω−φout|Z−R〉〈Z+R|Ω+ψ in〉Res[(SII (ω)), ZR]

The same assumptions allow us to deform the circleC into a contourC′ consisting
of a straight segment in the second sheet, just below the real axis, and an arc, the
radius of which we can take to infinity. The polynomial bound on the growth of
SII (ω) then ensures that the integral on the arc does not contribute when its radius
is taken to infinity. Thus we obtain∫ ∞

−∞
dE〈Ω−φout|(E − i ε)−〉〈(E − i ε)+|Ω+ψ in〉SII (E − i ε)

= −2π i 〈Ω−φout|Z−R〉〈Z+R|Ω+ψ in〉Res[(SII (ω)), ZR] (4.58)

The analyticity properties ofSII (ω) imply that we can cross the cut onR+ and
obtain ∫ ∞

0
dE〈Ω−φout|E−〉〈E+|Ω+ψ in〉S(E − i ε)

= −
∫ 0

−∞
dE〈Ω−φout|E−〉〈E+|Ω+ψ in〉SII (E)

−2π i 〈Ω−φout|Z−R〉〈Z+R|Ω+ψ in〉Res[(SII (ω)), ZR] (4.59)

Denote

φ− = Ω−φout, ψ+ = Ω+ψ in (4.60)

whereφ− andψ+ are the interacting states corresponding asymptotically toφout

andψ in for t →+∞ andt →−∞ respectively. With Eqs. (4.60) and (4.55) we
can write Eq. (4.59) as

(φ−, ψ+)H = (φout, Sψ in)H = −〈φ−|
(∫ 0

−∞
dE|E−〉〈E+|SII (E)

)
|ψ+〉

−2π i Res[(SII (ω)), ZR]〈φ−|Z−R〉〈Z+R|ψ+〉 (4.61)

We can then say that

−
∫ 0

−∞
dE|E−〉〈E+|SII (E)− 2π i Res[(SII (ω)), ZR]|Z−R〉〈Z+R| (4.62)

spans, in the sense of Eqs. (4.59) and (4.60), the space of interacting states. The
second term in Eq. (4.62) is identified as the resonant state. We see from Eq. (4.46)
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that

e−i (H′)×t |ZR〉 = e−i Z Rt |ZR〉, t ≥ 0 (4.63)

We now cast the development of the RHS model for resonances into the language
of the general mathematical context of the Lax–Phillips scattering theory. We start
with an analysis of the assumed properties of theS-matrix as given above. We
first note that in Eq. (4.52)S(E + i ε) is the boundary value onR+ of a function
S(ω) analytic in the first sheet upper half-plane above the cut. The unitarity of the
S-matrix implies that onR+ we have|S(E)| = 1. The analytic continuation of
S(ω) to the lower half-plane acrossR+ is then given by

SII (ω) = (S∗(ω̄))−1, Imω < 0 (4.64)

Denoteω′ = ω̄, Imω < 0. Equation (4.64) implies the following:

|SII (ω)| = |(S∗(ω̄))−1| = |(S∗(ω̄))|−1 = |S∗(ω′)|−1 = |S(ω′)|−1 (4.65)

and so

|S(ω′)| = |SII (ω)|−1 (4.66)

To proceed at this point, we make one more assumption on the behavior ofSII (ω)
in addition to the polynomial growth restriction of the RHS model, Eq. (4.56).
Suppose that there is a constantC > 0 such that|SII (ω)| > C for all Im ω < 0. In
this case we have, using Eq. (4.66),

|S(ω′)| = |SII (ω)|−1 < C , ω′ = ω̄, Imω′ > 0 (4.67)

and we find thatS(ω′) is a bounded analytic function on the first sheet upper
half-plane. The limit of this function on the real axis is then also bounded and
this implies thatS(ω) cannot have bound state poles on the negative real axis.
We see that the condition Eq. (4.67) is rather strong and limits the class of mod-
els which can be considered. However, this assumption enables us to use very
powerful tools from the theory ofH p spaces and obtain some surprising re-
sults, as we shall see presently. These results, in turn, serve as motivation for
the construction of a more general structure. We note that the restricting as-
sumption does allow us to consider simple models of resonance scattering, for
example, a simple (Friedrichs, 1950) model in which the pertubed Hamilto-
nian H has a continuous spectrum equal toR+, a resonance pole and no bound
states.

Denote the space of all bounded analytic functions on the upper half-plane by
H∞(

∏
). Putting forward the condition in Eq. (4.67), we can writeS∈ H∞(

∏
).

We then continue by introducing several definitions and theorems concerning
H P spaces of functions on the upper half-plane (the theory of scalar valuedH p
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functions can be found, for example, in Duren, 1970; Hoffman, 1962. For the
vector-valued case, see Rosenblum and Rovnyak (1985) or Nikol’skii (1985).

Definition(the spacesH p(
∏

)). The space of analytic functions on the upper half-
plane such that| f (x + iy)|p(0 < p < ∞) is integrable onx for eachy > 0 and

sup
y> 0

{∫ +∞
−∞
| f (x + iy)|pdx

}1/p

< C

for someC > 0 is called aH p(
∏

) space (0< p < ∞). We note that if|SII (ω)|
rises fast enough as|ω| → ∞ in the lower half-plane (i.e.,|S(ω)| falls fast enough
on the upper half-plane) we may haveS(ω) ∈ H p(

∏
) for some 0< p < ∞.

We state several theorems providing the structure of a functionf ∈ H p(
∏

),
p > 0.

Definition(Blaschke product). A Blaschke product on the upper half-plane is an
analytic functionb(z) on

∏
of the form

b(z) =
(

z− i

z+ i

)m∏
n

|z2
1 + 1|

z2
1 + 1

· z− zn

z− z̄n
(4.68)

Herem is a nonnegative integer andzn, Im zn > 0, are zeros ofb(z) in
∏

, finite
or infinite in number.

Theorem A. If f ∈ H p(
∏

) (0 < p ≤ ∞) and f 6≡ 0, then f(z) = b(z)g(z),
where g(z) is a nonvanishing Hp(

∏
) function. The boundary value function on

R satisfies|g(x)| = | f (x)| a.e., x∈ R. The function b(z) is a Blaschke product of
the form given in Eq. (4.68) and zn are the zeros (zn 6= i ) of f in

∏
.

We define a scalar inner function on5. This definition is to be compared with
the properties of the Lax–PhillipsS-matrix, which is a more general, operator-
valued inner function.

Definition(inner function). A functionf , analytic in the upper half-plane, with
the property| f (z)| < 1 for z > 0 and such that the boundary value function off
on R satisfies| f (x)| = 1, x ∈ R a.e. is called an inner function (for

∏
).

Definition(singular inner function). A singular inner function (on
∏

) is a function
of the form

s(z) = exp

{
i
∫ +∞
−∞

1+ tz

t − z
dν(t)

}
, z ∈

∏
(4.69)

wheredν(t) is a singular measure onR.
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Theorem B (canonical factorization of an inner function).Every inner function
on
∏

, fin(z) 6≡ 0, can be factorized in the form

fin(z) = eiαzb(z)s(z), z ∈
∏

(4.70)

whereα ≥ 0, b(z) is a Blaschke product, and s(z) is a singular inner function.

Definition(outer function). An outer function on
∏

is a function of the form

G(z) = ei γ exp

{
−i

1

π

∫ +∞
−∞

1+ tz

t − z
· logω(t)

1+ t2
dt

}
(4.71)

for some realγ and some measurable functionω(t) ≥ 0 with the properties

a.
∫ +∞
−∞

logω(t)

1+ t2
dt > −∞ b.

∫ +∞
−∞

[ω(t)] p

1+ t2
dt < ∞ (4.72)

Theorem C (canonical factorization theorem).Every function f(z) of the class
H p(

∏
), 0 < p < ∞, has a unique factorization into an inner and outer functions,

i.e., there exists a factorization of f(z) of the form

f (z) = fin(z) fout(z) = eiαzb(z)s(z)G(z) (4.73)

where b(z) is a Blaschke product, s(z) is a singular inner function, G(z) is an outer
function with the condition (b) of Eq. (4.72) replaced byω ∈ L p. Conversely, each
product of such factors belongs to Hp(

∏
).

Application of Theorem A above toS(ω), Imω > 0 satisfying Eq. (4.67) (i.e.,
whenS(ω) ∈ H∞(

∏
)) shows that in this caseS(ω), ω ∈∏ has the factorization

S(ω) = BS(ω)S̃(ω), ω ∈
∏

(4.74)

whereBS(ω) is a Blaschke product providing all the zeros ofS(ω) in the upper half-
plane and̃S(ω) is nonvanishing on5. If, in addition,|S(ω)| falls fast enough on the
upper half-plane, such thatS(ω) ∈ H p(

∏
) for some 0< p < ∞ (i.e.,|SII (ω)| rises

fast enough as|ω| → ∞ in the lower half-plane), then we can apply Theorem C
and find

S(ω) = Sin(ω)Sout(ω) = eiαωBS(ω)Ssing(ω)Sout(ω), Imω > 0 (4.75)

whereSsing(ω) is the singular part ofSin(ω) and in Eq. (4.74)

S̃(ω) = eiαωSsing(ω)Sout(ω).

Let us consider a situation whereBS(ω) in the canonical factorization ofS(ω)
is a simple, single Blaschke factor (this corresponds to a single simple resonance



P1: GXB

International Journal of Theoretical Physics [ijtp] PP994-ijtp-473601 November 20, 2003 22:19 Style file version May 30th, 2002

2312 Strauss

as we shall see below).

BS(ω) =
∣∣Z2

R+ 1
∣∣

Z2
R+ 1

· ω − Z̄R

ω − ZR
, Im ZR < 0 (4.76)

In this case we find thatS(ω), the analytic continuation of theS-matrix into the
upper half-plane, takes the form

S(ω) = eiαω

∣∣Z2
R+ 1

∣∣
Z2

R+ 1
· ω − Z̄R

ω − ZR
Ssing(ω)Sout(ω), Imω > 0 (4.77)

and the Blaschke factor provides the only zero ofS(ω) in the upper half-plane (the
same factor generates the second sheet pole of the analytic continuationSII (ω)
of S(ω) to the second Riemann sheet). The RHS modelS-matrix is then the
boundary value ofS(ω) on R+ (under the added assumptions onSII (ω) men-
tioned above). Conversely, given the RHS modelS-matrix, we may extend it to an
analytic function on the upper half-plane such thatS(ω) is a well-defined operator
S(ω) : H p(

∏
)→ H p(

∏
).

Finally, to conclude the argument, we need one more theorem from the theory
of H p functions

Theorem D. Let f ∈ H p(1≤ p < ∞) and f 6≡ 0. Let fin be the inner part in
the canonical factorization of f . Then

f H p = fin H p (4.78)

According to Theorem D the action ofS(ω), in the form given in Eq. (4.75)
or (4.77), as a multiplicative operator on the Hardy spaceH+(R) give

SH+(R) = Sin H+(R) (4.79)

whereSin is the inner part ofS.
We have seen that the action of the extension of the full evolution semigroup

e−i (H ′)×t , t ≥ 0, on the generalized eigenstate|ω+〉 correspond to the action of
the semigroup of Toeplitz operatorsTe−i Et on the eigenfunctionfω+ ∈ H+(R).
The discussion in sections 2 and 3 (particularly Eqs. (3.8) and (3.9)) shows that the
same correspondence exists between the semigroup{T(t)}t ≥ 0 defined on the Lax–
Phillips Hilbert space (see Eq. (3.1)) and its representation in the outgoing spectral
representation of the Lax–Phillips scattering theory. Equation (4.79) shows that
with a given RHS modelS-matrix (satisfying certain conditions) we can associate
a unique operator onH+(R), i.e.,

SRHS→ Sin

whereSRHS is the RHS modelS-matrix andSin is its inner part. Furthermore, as
in the case of the semigroup, one finds in the Lax–Phillips scattering theory an
object corresponding toSin, i.e., the Lax–PhillipsS-matrix.
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We go on to show that the proof of the main theorem of the Lax–Phillips theory
(theorem C of section 2) enables us to identify the eigenvectors of the semigroup
generated by the extended evolution in the RHS model. LetK̂ ⊂ H+(R) be the
following subspace:

K̂ = H+(R)ª SH+(R) = H+(R)ª Sin H+(R) (4.80)

(compare with Eq. (3.12)) then we can define a Lax–Phillips-type semigroup

Ẑ(t) = Te−i Et |K̂ , t ≥ 0 (4.81)

In the case of scalar functions with which we are dealing here the Lax–Phillips
theorem reduces to the statement that the eigenvalues ofẐ(t) correspond to zeros
of Sin(ω) in the upper half-plane, or poles of its analytic continuation to the lower
half-plane. From Eq. (4.77) we see that the only zero ofSin(ω) in the upper half-
plane, which according to Theorem A in this section is also the only zero ofS(ω),
is at Z̄R. The analytic continuation ofS(ω) to the lower half-plane of the second
Riemann sheet through Eq. (4.64) (see also Eq. (2.8)) implies that the location of
the pole is atZR. From the proof of the Lax–Phillips theorem we deduce that the
corresponding eigenvector ofẐ(t) is given by

fZR(E) = i

E − ZR
, fZR ∈ K̂ (4.82)

which is exactly the generalized eigenvector of the evolution semigroup generated
by e−i (H ′)×t , t ≥ 0 in the Hardy RHS.

It should be emphasized at this point that one can generalize the structures
and arguments given in this section to the more general case of vector-valued and
operator-valued functions, using the theory of vector- and operator-valuedH p

functions. Amongst other things the discussion of section 4 gives a small glimpse
into the powerful structure of the theory ofH p functions and its potential utilization
within the framework of quantum scattering theory.

5. CONCLUSIONS

After an introduction to the Lax–Phillips scattering theory in section 2 some
parts of the mathematical structure of this theory were put into a more general
mathematical context in section 3. Then, in section 4 the RHS model for quantum
mechanical resonances was revisited. It is shown in section 4 that, at least for certain
simple quantum mechanical scattering problems, the evolution semigroup of the
RHS model, as well as its eigenvalues, eigenvectors, and their relation to poles of
theS-matrix in the second Riemann sheet exhibit close links to the mathematical
structure of the Lax–Phillips scattering theory. These relations between the theories
suggest that there may exist a framework which combines the favorable properties
of the two theories, i.e., the applicability of the RHS construction to a wide range of
quantum mechanical resonance scattering problems and the Hilbert space structure
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of the Lax–Phillips theory. As mentioned in the Introduction, such a framework
has been suggested and the consequences of its application to the description of
quantum mechanical resonances are explored elsewhere (Strauss and Horwitz, in
preparation).
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